Dropout Regularization Versus ℓ_{2}-Penalization in the Linear Model

Gabriel Clara Sophie Langer Johannes Schmidt-Hieber

Department of Applied Mathematics, Universiteit Twente
September 4, 2023

UNIVERSITY
OF TWENTE.

Joint work with Sophie Langer and Johannes Schmidt-Hieber

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_{2}-Penalization in the Linear Model." arXiv preprint: 2306.10529 (2023).
(1) (Short) Motivation
(2) Linear Regression as a Toy Model
(3) Gradient Descent with Dropout

4 Second-Order Dynamics

Motivation: Model Averaging

Why perform model averaging in neural networks?

Motivation: Model Averaging

Why perform model averaging in neural networks?

- Breaking co-adaptation between neurons
- Preventing over-fitting

Motivation: Model Averaging

Why perform model averaging in neural networks?

- Breaking co-adaptation between neurons
- Preventing over-fitting

Ideally, Bayesian model averaging:

- Take prior on possible connections in the network
- Use posterior to average

Motivation: Model Averaging

Why perform model averaging in neural networks?

- Breaking co-adaptation between neurons
- Preventing over-fitting

Ideally, Bayesian model averaging:

- Take prior on possible connections in the network
- Use posterior to average

Problem: Combinatorial Explosion!

Dropout in Neural Networks

Proposed Solution: Dropout! ${ }^{1}$

${ }^{1}$ Srivastava N. et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research (2014).

Dropout in Neural Networks

Proposed Solution: Dropout! ${ }^{1}$

- Randomly exclude connections from training at every step of the gradient descent
- Re-scale trained weights appropriately
\Longrightarrow Approximates model averaging while being tractable
${ }^{1}$ Srivastava N. et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research (2014).

Dropout in Neural Networks

Figure: Regular neuron (left) and one sample of a neuron with dropout (right).

(1) (Short) Motivation

(2) Linear Regression as a Toy Model
(3) Gradient Descent with Dropout

4 Second-Order Dynamics

Why Study the Linear Model?

Canonical piece of wisdom: adding dropout noise to linear regression performs ridge regression $/ \ell_{2}$-penalization/Thikhonov regularization!

Why Study the Linear Model?

Canonical piece of wisdom: adding dropout noise to linear regression performs ridge regression/ e_{2}-penalization/Thikhonov regularization!

Proposition (Srivastava et al. Section 9)

Dropout matrix $D_{i i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}(p)$; linear model $Y=X \beta_{\star}+\varepsilon$ with standard normal noise independent of D, then

$$
\underset{\beta}{\arg \min } \mathbb{E}\left[\|Y-X D \beta\|_{2}^{2} \mid Y\right]=\left(p X^{\mathrm{t}} X+(1-p) \operatorname{Diag}\left(X^{\mathrm{t}} X\right)\right)^{-1} X^{\mathrm{t}} Y
$$

Why Study the Linear Model?

Canonical piece of wisdom: adding dropout noise to linear regression performs ridge regression/ e_{2}-penalization/Thikhonov regularization!

Proposition (Srivastava et al. Section 9)

Dropout matrix $D_{i i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}(p)$; linear model $Y=X \beta_{\star}+\varepsilon$ with standard normal noise independent of D, then

$$
\underset{\beta}{\arg \min } \mathbb{E}\left[\|Y-X D \beta\|_{2}^{2} \mid Y\right]=\left(p X^{\mathrm{t}} X+(1-p) \operatorname{Diag}\left(X^{\mathrm{t}} X\right)\right)^{-1} X^{\mathrm{t}} Y=: \tilde{\beta}
$$

Why Study the Linear Model?

Proposition (Srivastava et al. Section 9)

Dropout matrix $D_{i i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}(p)$; linear model $Y=X \beta_{\star}+\varepsilon$ with standard normal noise independent of D, then

$$
\underset{\beta}{\arg \min } \mathbb{E}\left[\|Y-X D \beta\|_{2}^{2} \mid Y\right]=: \tilde{\beta}
$$

Intuition:

- Re-scaled minimizer of the averaged loss performs weighted ridge regression:

$$
p \tilde{\beta}=\underset{\beta}{\arg \min }\left(\|Y-X \beta\|_{2}^{2}+\left(\frac{1}{p}-1\right) \cdot\left\|\sqrt{\operatorname{Diag}\left(X^{\mathrm{t}} X\right)} \beta\right\|_{2}^{2}\right)
$$

- Small $p \Longrightarrow$ strong regularization

Why Study the Linear Model?

Proposition (Srivastava et al. Section 9)

Dropout matrix $D_{i i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}(p)$; linear model $Y=X \beta_{\star}+\varepsilon$ with standard normal noise independent of D, then

$$
\underset{\beta}{\arg \min } \mathbb{E}\left[\|Y-X D \beta\|_{2}^{2} \mid Y\right]=: \tilde{\beta}
$$

Problems:

- No explicit gradient descent
- No access to variance \Longrightarrow no statistical analysis

Why Study the Linear Model?

Proposition (Srivastava et al. Section 9)

Dropout matrix $D_{i i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}(p)$; linear model $Y=X \beta_{\star}+\varepsilon$ with standard normal noise independent of D, then

$$
\underset{\beta}{\arg \min } \mathbb{E}\left[\|Y-X D \beta\|_{2}^{2} \mid Y\right]=: \tilde{\beta}
$$

Problems:

- No explicit gradient descent
- No access to variance \Longrightarrow no statistical analysis
- Conditional expectation $\mathbb{E}[\cdot \mid Y]$ represents loss of information $\Longrightarrow \tilde{\beta}$ may not capture gradient descent dynamics

Why Study the Linear Model?

Canonical piece of wisdom: adding dropout noise to linear regression performs ridge regression $/ \ell_{2}$-penalization/Thikhonov regularization!

(1) (Short) Motivation

(2) Linear Regression as a Toy Model
(3) Gradient Descent with Dropout
4. Second-Order Dynamics

Some Definitions

- Dropout matrix: $D_{i i} \stackrel{i . i . d .}{\sim} \operatorname{Ber}(p)$

Some Definitions

- Dropout matrix: $D_{i i} \stackrel{i . i . d .}{\sim} \operatorname{Ber}(p)$
- Important matrices:

$$
\begin{aligned}
\mathbb{X} & :=X^{\mathrm{t}} X \\
\overline{\mathbb{X}} & :=\mathbb{X}-\operatorname{Diag}(\mathbb{X}) \\
\mathbb{X}_{p} & :=p \mathbb{X}+(1-p) \operatorname{Diag}(\mathbb{X})
\end{aligned}
$$

Some Definitions

- Dropout matrix: $D_{i i} \stackrel{i . i . d .}{\sim} \operatorname{Ber}(p)$
- Important matrices:

$$
\begin{aligned}
\mathbb{X} & :=X^{\mathrm{t}} X \\
\overline{\mathbb{X}} & :=\mathbb{X}-\operatorname{Diag}(\mathbb{X}) \\
\mathbb{X}_{p} & :=p \mathbb{X}+(1-p) \operatorname{Diag}(\mathbb{X})
\end{aligned}
$$

$\left(\mathbb{X}_{p}\right.$ invertible if $\min _{i} \mathbb{X}_{i i}>0$)

Some Definitions

- Dropout matrix: $D_{i i} \stackrel{i . i . d .}{\sim} \operatorname{Ber}(p)$
- Important matrices:

$$
\begin{aligned}
\mathbb{X} & :=X^{\mathrm{t}} X \\
\overline{\mathbb{X}} & :=\mathbb{X}-\operatorname{Diag}(\mathbb{X}) \\
\mathbb{X}_{p} & :=p \mathbb{X}+(1-p) \operatorname{Diag}(\mathbb{X})
\end{aligned}
$$

- Averaged dropout estimator: $\tilde{\beta}=\mathbb{X}_{p}^{-1} X^{t} Y$ (minimizer from proposition)

Some Definitions

- Dropout matrix: $D_{i i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Ber}(p)$
- Important matrices:

$$
\begin{aligned}
\mathbb{X} & :=X^{\mathrm{t}} X \\
\overline{\mathbb{X}} & :=\mathbb{X}-\operatorname{Diag}(\mathbb{X}) \\
\mathbb{X}_{p} & :=p \mathbb{X}+(1-p) \operatorname{Diag}(\mathbb{X})
\end{aligned}
$$

- Averaged dropout estimator: $\tilde{\beta}=\mathbb{X}_{p}^{-1} X^{\mathrm{t}} Y$
- Euclidean norm \| $\cdot \|_{2}$ on vectors; spectral norm || $\|$ on matrices

Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

$$
\beta_{k+1}=\beta_{k}-\frac{\alpha}{2} \nabla_{\beta_{k}}\left\|Y-X \beta_{k}\right\|_{2}^{2}
$$

Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

$$
\beta_{k+1}=\beta_{k}-\frac{\alpha}{2} \nabla_{\beta_{k}}\left\|Y-X \beta_{k}\right\|_{2}^{2}
$$

On-Line Dropout:

$$
\tilde{\beta}_{k+1}=\tilde{\beta}_{k}-\frac{\alpha}{2} \nabla_{\tilde{\beta}_{k}}\left\|Y-X D_{k+1} \tilde{\beta}_{k}\right\|_{2}^{2}
$$

A new i.i.d. dropout matrix is sampled every iteration!

Incorporating Dropout with Gradient Descent

On-Line Dropout:

$$
\tilde{\beta}_{k+1}=\tilde{\beta}_{k}-\frac{\alpha}{2} \nabla_{\tilde{\beta}_{k}}\left\|Y-X D_{k+1} \tilde{\beta}_{k}\right\|_{2}^{2}
$$

A new i.i.d. dropout matrix is sampled every iteration!

Questions:

- Convergence towards $\tilde{\beta}$?
- Statistical optimality?

Convergence of Expectation

Proposition

If $\alpha p\|\mathbb{X}\|<1$ and $\min _{i} \mathbb{X}_{i i}>0$, then

$$
\left\|\mathbb{E}\left[\tilde{\beta}_{k}-\tilde{\beta}\right]\right\|_{2} \leq\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k} \cdot\left\|\mathbb{E}\left[\tilde{\beta}_{0}-\tilde{\beta}\right]\right\|_{2}
$$

Convergence of Expectation

Proposition

If $\alpha p\|\mathbb{X}\|<1$ and $\min _{i} \mathbb{X}_{i i}>0$, then

$$
\left\|\mathbb{E}\left[\tilde{\beta}_{k}-\tilde{\beta}\right]\right\|_{2} \leq\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k} \cdot\left\|\mathbb{E}\left[\tilde{\beta}_{0}-\tilde{\beta}\right]\right\|_{2}
$$

Intuition:

- Exponential decay, as in regular gradient descent
- Expected learning rate αp

Convergence of Expectation

Proposition

If $\alpha p\|\mathbb{X}\|<1$ and $\min _{i} \mathbb{X}_{i i}>0$, then

$$
\left\|\mathbb{E}\left[\tilde{\beta}_{k}-\tilde{\beta}\right]\right\|_{2} \leq\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k} \cdot\left\|\mathbb{E}\left[\tilde{\beta}_{0}-\tilde{\beta}\right]\right\|_{2}
$$

Idea of proof:

- Rewrite

$$
\tilde{\beta}_{k}-\tilde{\beta}=\left(I-\alpha D_{k} \mathbb{X} D_{k}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)+\alpha D_{k} \overline{\mathbb{X}}\left(p I-D_{k}\right) \tilde{\beta}
$$

Convergence of Expectation

Proposition

If $\alpha p\|\mathbb{X}\|<1$ and $\min _{i} \mathbb{X}_{i i}>0$, then

$$
\left\|\mathbb{E}\left[\tilde{\beta}_{k}-\tilde{\beta}\right]\right\|_{2} \leq\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k} \cdot\left\|\mathbb{E}\left[\tilde{\beta}_{0}-\tilde{\beta}\right]\right\|_{2}
$$

Idea of proof:

- Rewrite

$$
\tilde{\beta}_{k}-\tilde{\beta}=\left(I-\alpha D_{k} \backslash D_{k}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)+\alpha D_{k} \overline{\mathbb{X}}\left(p I-D_{k}\right) \tilde{\beta}
$$

- Compute

$$
\begin{aligned}
\mathbb{E}\left[D_{k} 刃 D_{k}\right] & =p \mathbb{X}_{p} \\
\mathbb{E}\left[D_{k} \overline{\mathbb{}}\left(p I-D_{k}\right)\right] & =0
\end{aligned}
$$

Convergence of Expectation

Proposition

If $\alpha p\|\mathbb{X}\|<1$ and $\min _{i} \mathbb{X}_{i i}>0$, then

$$
\left\|\mathbb{E}\left[\tilde{\beta}_{k}-\tilde{\beta}\right]\right\|_{2} \leq\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k} \cdot\left\|\mathbb{E}\left[\tilde{\beta}_{0}-\tilde{\beta}\right]\right\|_{2}
$$

Idea of proof:

- Rewrite

$$
\tilde{\beta}_{k}-\tilde{\beta}=\left(I-\alpha D_{k} \backslash D_{k}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)+\alpha D_{k} \overline{\times}\left(p I-D_{k}\right) \tilde{\beta}
$$

- Compute

$$
\begin{aligned}
\mathbb{E}\left[D_{k} 刃 D_{k}\right] & =p \mathbb{X}_{p} \\
\mathbb{E}\left[D_{k} \overline{\mathbb{}}\left(p I-D_{k}\right)\right] & =0
\end{aligned}
$$

- Now $\mathbb{E}\left[\tilde{\beta}_{k}-\tilde{\beta}\right]=\left(I-\alpha p \mathbb{X}_{p}\right) \mathbb{E}\left[\tilde{\beta}_{k-1}-\tilde{\beta}\right] ;$ finish with induction!

(1) (Short) Motivation

(2) Linear Regression as a Toy Model
(3) Gradient Descent with Dropout
(4) Second-Order Dynamics

Second-Order Dynamics I

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\text {aff }}:=B Y+a$ (with B and a independent of Y) and linear estimator $\tilde{\beta}_{A}:=A X^{t} Y$ (with A deterministic), then

$$
\mathbb{E}\left[\tilde{\beta}_{\mathrm{aff}}\right] \approx \mathbb{E}\left[\tilde{\beta}_{A}\right] \Longrightarrow \operatorname{Cov}\left(\tilde{\beta}_{\mathrm{aff}}-\tilde{\beta}_{A}, \tilde{\beta}_{A}\right) \approx 0
$$

Second-Order Dynamics I

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\text {aff }}:=B Y+a$ (with B and a independent of Y) and linear estimator $\tilde{\beta}_{A}:=A X^{t} Y$ (with A deterministic), then

$$
\mathbb{E}\left[\tilde{\beta}_{\mathrm{aff}}\right] \approx \mathbb{E}\left[\tilde{\beta}_{A}\right] \Longrightarrow \operatorname{Cov}\left(\tilde{\beta}_{\mathrm{aff}}-\tilde{\beta}_{A}, \tilde{\beta}_{A}\right) \approx 0
$$

Intuition:

- If $\tilde{\beta}_{\text {aff }}$ is (nearly) unbiased for $\tilde{\beta}_{A}$, then

$$
\tilde{\beta}_{\mathrm{aff}} \approx \tilde{\beta}_{A}+\text { centered orthogonal noise }
$$

Second-Order Dynamics I

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\text {aff }}:=B Y+a$ (with B and a independent of Y) and linear estimator $\tilde{\beta}_{A}:=A X^{\mathrm{t}} Y$ (with A deterministic), then

$$
\mathbb{E}\left[\tilde{\beta}_{\mathrm{aff}}\right] \approx \mathbb{E}\left[\tilde{\beta}_{A}\right] \Longrightarrow \operatorname{Cov}\left(\tilde{\beta}_{\mathrm{aff}}-\tilde{\beta}_{A}, \tilde{\beta}_{A}\right) \approx 0
$$

Intuition:

- If $\tilde{\beta}_{\text {aff }}$ is (nearly) unbiased for $\tilde{\beta}_{A}$, then

$$
\tilde{\beta}_{\text {aff }} \approx \tilde{\beta}_{A}+\text { centered orthogonal noise }
$$

- Gauss-Markov like corollary; if $B_{k} Y+a_{k}$ asymptotically unbiased for $\tilde{\beta}_{A}$, then

$$
\liminf _{k \rightarrow \infty} \operatorname{Cov}\left(B_{k} Y+a_{k}\right) \geq \operatorname{Cov}\left(\tilde{\beta}_{A}\right)
$$

Second-Order Dynamics I

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\text {aff }}:=B Y+a$ (with B and a independent of Y) and linear estimator $\tilde{\beta}_{A}:=A X^{t} Y$ (with A deterministic), then

$$
\mathbb{E}\left[\tilde{\beta}_{\mathrm{aff}}\right] \approx \mathbb{E}\left[\tilde{\beta}_{A}\right] \Longrightarrow \operatorname{Cov}\left(\tilde{\beta}_{\mathrm{aff}}-\tilde{\beta}_{A}, \tilde{\beta}_{A}\right) \approx 0
$$

Dropout-specific:

- Dropout iterates $\tilde{\beta}_{k}$ are affine estimators asymptotically unbiased for $\tilde{\beta}$
- $\operatorname{Cov}(\tilde{\beta})$ represents fundamental lower bound

Second-Order Dynamics II

Lemma

Up to exponentially decaying remainder ρ_{k}, second moment of $\tilde{\beta}_{k}-\tilde{\beta}$ evolves as affine dynamical system

$$
\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]=S\left(\mathbb{E}\left[\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)^{\mathrm{t}}\right]\right)+\rho_{k-1}
$$

pushed forward by affine operator S on matrices.

Second-Order Dynamics II

Lemma

Up to exponentially decaying remainder ρ_{k}, second moment of $\tilde{\beta}_{k}-\tilde{\beta}$ evolves as affine dynamical system

$$
\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]=S\left(\mathbb{E}\left[\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)^{\mathrm{t}}\right]\right)+\rho_{k-1}
$$

pushed forward by affine operator S on matrices.

Intuition:

- Interaction between GD dynamics and on-line dropout encapsulated in S
- This structure remains hidden when considering averaged estimator $\tilde{\beta}$

Second-Order Dynamics II

Lemma

Up to exponentially decaying remainder ρ_{k}, second moment of $\tilde{\beta}_{k}-\tilde{\beta}$ evolves as affine dynamical system

$$
\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]=S\left(\mathbb{E}\left[\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)^{\mathrm{t}}\right]\right)+\rho_{k-1}
$$

pushed forward by affine operator S on matrices.

Exact Definition:

$$
\begin{aligned}
S(A)= & \left(I-\alpha p \mathbb{X}_{p}\right) A\left(I-\alpha p \mathbb{X}_{p}\right)+\alpha^{2} p(1-p) \operatorname{Diag}\left(\mathbb{X}_{p} A \mathbb{X}_{p}\right) \\
& +\alpha^{2} p^{2}(1-p)^{2} \overline{\mathbb{X}} \odot\left(A+\mathbb{E}\left[\tilde{\beta} \tilde{\beta}^{\dagger}\right]\right) \odot \overline{\mathbb{X}} \\
& +\alpha^{2} p^{2}(1-p)\left(\overline{\mathbb{X}} \operatorname{Diag}\left(A+\mathbb{E}\left[\tilde{\beta} \tilde{\beta}^{\dagger}\right]\right) \overline{\mathbb{X}}\right)_{p} \\
& +\alpha^{2} p^{2}(1-p)\left(\overline{\mathbb{X}} \operatorname{Diag}\left(\mathbb{X}_{p} A\right)+\operatorname{Diag}\left(\mathbb{X}_{p} A\right) \overline{\mathbb{X}}\right)
\end{aligned}
$$

Second-Order Dynamics II

Lemma

Up to exponentially decaying remainder ρ_{k}, second moment of $\tilde{\beta}_{k}-\tilde{\beta}$ evolves as affine dynamical system

$$
\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{t}\right]=S\left(\mathbb{E}\left[\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)^{t}\right]\right)+\rho_{k-1}
$$

pushed forward by affine operator S on matrices.

Notes on Proof:

- S has complex expression due to dependence structure in

$$
\tilde{\beta}_{k}-\tilde{\beta}=\left(I-\alpha D_{k} \nVdash D_{k}\right)\left(\tilde{\beta}_{k-1}-\tilde{\beta}\right)+\alpha D_{k} \overline{\times}\left(p I-D_{k}\right) \tilde{\beta}
$$

- Proof requires computing $4^{\text {th }}$ order moments of the form $\mathbb{E}\left[D_{k} A D_{k} B D_{k} C D_{k}\right]$

Second-Order Dynamics III

Theorem

For sufficiently small $\alpha:=\alpha(\mathbb{X}, p), S_{0}:=S(0)$, and $S_{\text {lin }}:=S-S_{0}$

$$
\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]-\left(\mathrm{id}-S_{\mathrm{lin}}\right)^{-1} S_{0}\right\|=O\left(k\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k-1}\right)
$$

Second-Order Dynamics III

Theorem
For sufficiently small $\alpha:=\alpha(\mathbb{X}, p), S_{0}:=S(0)$, and $S_{\text {lin }}:=S-S_{0}$

$$
\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]-\left(\mathrm{id}-S_{\text {lin }}\right)^{-1} S_{0}\right\|=O\left(k\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k-1}\right)
$$

Notes:

- Limit characterized by intercept S_{0} and linear part $S_{\text {lin }}$ of S
- Small $\alpha \Longrightarrow$ operator norm of $S_{\text {lin }}$ less than 1

Second-Order Dynamics III

Theorem

For sufficiently small $\alpha:=\alpha(\mathbb{X}, p), S_{0}:=S(0)$, and $S_{\text {lin }}:=S-S_{0}$

$$
\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]-\left(\mathrm{id}-S_{\mathrm{lin}}\right)^{-1} S_{0}\right\|=O\left(k\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k-1}\right)
$$

Corollary I:

- $\operatorname{Cov}\left(\tilde{\beta}_{k}\right)=\operatorname{Cov}(\tilde{\beta})+\left(\mathrm{id}-S_{\text {lin }}\right)^{-1} S_{0}+O\left(k\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k-1}\right)$
- $\left(\mathrm{id}-S_{\mathrm{lin}}\right)^{-1} S_{0}$ is the variance of the "centered orthogonal noise" from earlier proposition

Second-Order Dynamics III

Theorem

For sufficiently small $\alpha:=\alpha(\mathbb{X}, p), S_{0}:=S(0)$, and $S_{\text {lin }}:=S-S_{0}$

$$
\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]-\left(\mathrm{id}-S_{\mathrm{lin}}\right)^{-1} S_{0}\right\|=O\left(k\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k-1}\right)
$$

Corollary I:

- $\operatorname{Cov}\left(\tilde{\beta}_{k}\right)=\operatorname{Cov}(\tilde{\beta})+\left(\mathrm{id}-S_{\text {lin }}\right)^{-1} S_{0}+O\left(k\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k-1}\right)$
- Unfortunately, $\left(\mathrm{id}-S_{\text {lin }}\right)^{-1} S_{0}>0$ in general, so $\tilde{\beta}_{k}$ does not attain the optimal variance!

Second-Order Dynamics III

Theorem

For sufficiently small $\alpha:=\alpha(\mathbb{X}, p), S_{0}:=S(0)$, and $S_{\text {lin }}:=S-S_{0}$

$$
\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]-\left(\mathrm{id}-S_{\text {lin }}\right)^{-1} S_{0}\right\|=O\left(k\left\|I-\alpha p \mathbb{X}_{p}\right\|^{k-1}\right)
$$

Corollary I:

- $\operatorname{Cov}\left(\tilde{\beta}_{k}\right)=\operatorname{Cov}(\tilde{\beta})+\left(\mathrm{id}-S_{\text {lin }}\right)^{-1} S_{0}+O\left(k\left\|I-\alpha p \bigwedge_{p}\right\|^{k-1}\right)$
- Unfortunately, $\left(\mathrm{id}-S_{\text {lin }}\right)^{-1} S_{0}>0$ in general, so $\tilde{\beta}_{k}$ does not attain the optimal variance!

Corollary II:

- In general, $\tilde{\beta}_{k}$ does not converge to $\tilde{\beta}$ in L_{2} since

$$
\operatorname{Tr}\left(\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]\right)=\mathbb{E}\left[\left\|\tilde{\beta}_{k}-\tilde{\beta}\right\|_{2}^{2}\right] .
$$

Conclusion

Our techniques/results show:

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.

Conclusion

Our techniques/results show:

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- Elementary - yet complicated - linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.

Conclusion

Our techniques/results show:

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- Elementary - yet complicated - linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.
- Second-order dynamics are only visible through direct study of on-line iterates.

Conclusion

Our techniques/results show:

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- Elementary - yet complicated - linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.
- Second-order dynamics are only visible through direct study of on-line iterates.
- Often cited connection with ridge regression is more nuanced for the variance.

Extensions/Open Problems

- Neural networks?
- Connections with other forms of algorithmic regularization?
- Randomized design and iteration dependent learning rate?

For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_{2}-Penalization in the Linear Model." arXiv preprint: 2306.10529 (2023).

For more details:
G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_{2}-Penalization in the Linear Model." arXiv preprint: 2306.10529 (2023).

Thanks for your attention!

Ruppert-Polyak Averaging

Theorem

Running average $\tilde{\beta}_{k}^{\text {rp }}:=\frac{1}{k} \sum_{\ell=1}^{k} \tilde{\beta}_{e} ;$ for sufficiently small $\alpha:=\alpha(\mathbb{X}, p)$

Ruppert-Polyak Averaging

Theorem

Running average $\tilde{\beta}_{k}^{\text {rp }}:=\frac{1}{k} \sum_{\ell=1}^{k} \tilde{\beta}_{e} ;$ for sufficiently small $\alpha:=\alpha(\mathbb{X}, p)$

$$
\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}^{\mathrm{rp}}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}^{\mathrm{rp}}-\tilde{\beta}\right)^{\mathrm{t}}\right]\right\|=O\left(k^{-1}\right)
$$

Intuition:

- "Centered orthogonal noise" is averaged away; at the price of slower convergence
- $\tilde{\beta}_{k}^{\text {rp }}$ converges to $\tilde{\beta}$ in L_{2}

