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Motivation: Model Averaging

Why perform model averaging in neural networks?
Breaking co-adaptation between neurons
Preventing over-fitting

Ideally, Bayesian model averaging:
Take prior on possible connections in the network
Use posterior to average

Problem: Combinatorial Explosion!
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Dropout in Neural Networks

Proposed Solution: Dropout!1

1Srivastava N. et al. “Dropout: a simple way to prevent neural networks from
overfitting.” Journal of Machine Learning Research (2014).
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Dropout in Neural Networks

Proposed Solution: Dropout!1

Randomly exclude connections from training at every step of the
gradient descent
Re-scale trained weights appropriately

⟹ Approximates model averaging while being tractable

1Srivastava N. et al. “Dropout: a simple way to prevent neural networks from
overfitting.” Journal of Machine Learning Research (2014).
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Dropout in Neural Networks

Figure: Regular neuron (left) and one sample of a neuron with dropout (right).
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Why Study the Linear Model?

Canonical piece of wisdom: adding dropout noise to linear regression
performs ridge regression/ℓ2-penalization/Thikhonov regularization!

Proposition (Srivastava et al. Section 9)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀 with standard

normal noise independent of 𝐷, then

argmin
𝛽

𝔼[‖𝑌 − 𝑋𝐷𝛽‖22 ∣ 𝑌] = (𝑝𝑋 t𝑋 + (1 − 𝑝)Diag(𝑋 t𝑋))
−1
𝑋 t𝑌
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𝑋 t𝑌 =∶ ̃𝛽

G. Clara (UTwente) Dropout in the Linear Model September 4, 2023 4 / 12



Why Study the Linear Model?

Proposition (Srivastava et al. Section 9)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀 with standard

normal noise independent of 𝐷, then

argmin
𝛽

𝔼[‖𝑌 − 𝑋𝐷𝛽‖22 ∣ 𝑌] =∶ ̃𝛽

Intuition:
Re-scaled minimizer of the averaged loss performs weighted ridge
regression:

𝑝 ̃𝛽 = argmin
𝛽

(‖𝑌 − 𝑋𝛽‖22 + ( 1
𝑝
− 1) ⋅ ‖‖√Diag(𝑋 t𝑋)𝛽‖‖

2

2
)

Small 𝑝 ⟹ strong regularization
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Why Study the Linear Model?

Proposition (Srivastava et al. Section 9)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
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argmin
𝛽

𝔼[‖𝑌 − 𝑋𝐷𝛽‖22 ∣ 𝑌] =∶ ̃𝛽

Problems:
No explicit gradient descent
No access to variance ⟹ no statistical analysis
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Why Study the Linear Model?

Proposition (Srivastava et al. Section 9)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀 with standard

normal noise independent of 𝐷, then

argmin
𝛽

𝔼[‖𝑌 − 𝑋𝐷𝛽‖22 ∣ 𝑌] =∶ ̃𝛽

Problems:
No explicit gradient descent
No access to variance ⟹ no statistical analysis
Conditional expectation 𝔼[ ⋅ ∣ 𝑌] represents loss of information
⟹ ̃𝛽 may not capture gradient descent dynamics
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Some Definitions

Dropout matrix: 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝)

Important matrices:

𝕏 ∶= 𝑋 t𝑋

𝕏 ∶= 𝕏 − Diag(𝕏)
𝕏𝑝 ∶= 𝑝𝕏 + (1 − 𝑝)Diag(𝕏)

(𝕏𝑝 invertible if min𝑖 𝕏𝑖𝑖 > 0)
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Some Definitions

Dropout matrix: 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝)

Important matrices:

𝕏 ∶= 𝑋 t𝑋

𝕏 ∶= 𝕏 − Diag(𝕏)
𝕏𝑝 ∶= 𝑝𝕏 + (1 − 𝑝)Diag(𝕏)

Averaged dropout estimator: ̃𝛽 = 𝕏−1𝑝 𝑋 t𝑌 (minimizer from
proposition)
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Some Definitions

Dropout matrix: 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝)

Important matrices:

𝕏 ∶= 𝑋 t𝑋

𝕏 ∶= 𝕏 − Diag(𝕏)
𝕏𝑝 ∶= 𝑝𝕏 + (1 − 𝑝)Diag(𝕏)

Averaged dropout estimator: ̃𝛽 = 𝕏−1𝑝 𝑋 t𝑌
Euclidean norm ‖ ⋅ ‖2 on vectors; spectral norm ‖ ⋅ ‖ on matrices
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Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

𝛽𝑘+1 = 𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝛽𝑘‖‖

2

2
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Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

𝛽𝑘+1 = 𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝛽𝑘‖‖

2

2

On-Line Dropout:

̃𝛽𝑘+1 = ̃𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝐷𝑘+1 ̃𝛽𝑘‖‖

2

2

A new 𝑖.𝑖.𝑑. dropout matrix is sampled every iteration!
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Incorporating Dropout with Gradient Descent

On-Line Dropout:

̃𝛽𝑘+1 = ̃𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝐷𝑘+1 ̃𝛽𝑘‖‖

2

2

A new 𝑖.𝑖.𝑑. dropout matrix is sampled every iteration!

Questions:
Convergence towards ̃𝛽?
Statistical optimality?
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2

Intuition:
Exponential decay, as in regular gradient descent
Expected learning rate 𝛼𝑝
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2

Idea of proof:
Rewrite

̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽
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̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽

Compute

𝔼[𝐷𝑘𝕏𝐷𝑘] = 𝑝𝕏𝑝
𝔼[𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘)] = 0

G. Clara (UTwente) Dropout in the Linear Model September 4, 2023 7 / 12



Convergence of Expectation
Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2

Idea of proof:
Rewrite

̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽

Compute

𝔼[𝐷𝑘𝕏𝐷𝑘] = 𝑝𝕏𝑝
𝔼[𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘)] = 0

Now 𝔼[ ̃𝛽𝑘 − ̃𝛽] = (𝐼 − 𝛼𝑝𝕏𝑝)𝔼[ ̃𝛽𝑘−1 − ̃𝛽]; finish with induction!
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Second-Order Dynamics I

Theorem (Informal Statement)
Affine estimator ̃𝛽aff ∶= 𝐵𝑌 + 𝑎 (with 𝐵 and 𝑎 independent of 𝑌) and
linear estimator ̃𝛽𝐴 ∶= 𝐴𝑋 t𝑌 (with 𝐴 deterministic), then

𝔼[ ̃𝛽aff] ≈ 𝔼[ ̃𝛽𝐴] ⟹ Cov( ̃𝛽aff − ̃𝛽𝐴, ̃𝛽𝐴) ≈ 0
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Intuition:
If ̃𝛽aff is (nearly) unbiased for ̃𝛽𝐴, then

̃𝛽aff ≈ ̃𝛽𝐴 + centered orthogonal noise
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Second-Order Dynamics I

Theorem (Informal Statement)
Affine estimator ̃𝛽aff ∶= 𝐵𝑌 + 𝑎 (with 𝐵 and 𝑎 independent of 𝑌) and
linear estimator ̃𝛽𝐴 ∶= 𝐴𝑋 t𝑌 (with 𝐴 deterministic), then

𝔼[ ̃𝛽aff] ≈ 𝔼[ ̃𝛽𝐴] ⟹ Cov( ̃𝛽aff − ̃𝛽𝐴, ̃𝛽𝐴) ≈ 0

Intuition:
If ̃𝛽aff is (nearly) unbiased for ̃𝛽𝐴, then

̃𝛽aff ≈ ̃𝛽𝐴 + centered orthogonal noise

Gauss-Markov like corollary; if 𝐵𝑘𝑌 + 𝑎𝑘 asymptotically unbiased
for ̃𝛽𝐴, then

lim inf
𝑘→∞

Cov(𝐵𝑘𝑌 + 𝑎𝑘) ≥ Cov( ̃𝛽𝐴)
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Second-Order Dynamics I

Theorem (Informal Statement)
Affine estimator ̃𝛽aff ∶= 𝐵𝑌 + 𝑎 (with 𝐵 and 𝑎 independent of 𝑌) and
linear estimator ̃𝛽𝐴 ∶= 𝐴𝑋 t𝑌 (with 𝐴 deterministic), then

𝔼[ ̃𝛽aff] ≈ 𝔼[ ̃𝛽𝐴] ⟹ Cov( ̃𝛽aff − ̃𝛽𝐴, ̃𝛽𝐴) ≈ 0

Dropout-specific:
Dropout iterates ̃𝛽𝑘 are affine estimators asymptotically unbiased
for ̃𝛽
Cov( ̃𝛽) represents fundamental lower bound
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Second-Order Dynamics II

Lemma
Up to exponentially decaying remainder 𝜌𝑘, second moment of ̃𝛽𝑘 − ̃𝛽
evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine operator 𝑆 on matrices.
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Second-Order Dynamics II

Lemma
Up to exponentially decaying remainder 𝜌𝑘, second moment of ̃𝛽𝑘 − ̃𝛽
evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine operator 𝑆 on matrices.

Intuition:
Interaction between GD dynamics and on-line dropout
encapsulated in 𝑆
This structure remains hidden when considering averaged
estimator ̃𝛽
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Second-Order Dynamics II
Lemma
Up to exponentially decaying remainder 𝜌𝑘, second moment of ̃𝛽𝑘 − ̃𝛽
evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine operator 𝑆 on matrices.

Exact Definition:

𝑆(𝐴) = (𝐼 − 𝛼𝑝𝕏𝑝)𝐴(𝐼 − 𝛼𝑝𝕏𝑝) + 𝛼2𝑝(1 − 𝑝)Diag(𝕏𝑝𝐴𝕏𝑝)

+ 𝛼2𝑝2(1 − 𝑝)2𝕏⊙ (𝐴 + 𝔼[ ̃𝛽 ̃𝛽t]) ⊙ 𝕏

+ 𝛼2𝑝2(1 − 𝑝)(𝕏Diag(𝐴 + 𝔼[ ̃𝛽 ̃𝛽t])𝕏)
𝑝

+ 𝛼2𝑝2(1 − 𝑝)(𝕏Diag(𝕏𝑝𝐴) + Diag(𝕏𝑝𝐴)𝕏)
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Second-Order Dynamics II

Lemma
Up to exponentially decaying remainder 𝜌𝑘, second moment of ̃𝛽𝑘 − ̃𝛽
evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine operator 𝑆 on matrices.

Notes on Proof:
𝑆 has complex expression due to dependence structure in

̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽

Proof requires computing 4th order moments of the form
𝔼[𝐷𝑘𝐴𝐷𝑘𝐵𝐷𝑘𝐶𝐷𝑘]
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Second-Order Dynamics III

Theorem
For sufficiently small 𝛼 ∶= 𝛼(𝕏, 𝑝), 𝑆0 ∶= 𝑆(0), and 𝑆lin ∶= 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)
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For sufficiently small 𝛼 ∶= 𝛼(𝕏, 𝑝), 𝑆0 ∶= 𝑆(0), and 𝑆lin ∶= 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Notes:
Limit characterized by intercept 𝑆0 and linear part 𝑆lin of 𝑆
Small 𝛼 ⟹ operator norm of 𝑆lin less than 1
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Theorem
For sufficiently small 𝛼 ∶= 𝛼(𝕏, 𝑝), 𝑆0 ∶= 𝑆(0), and 𝑆lin ∶= 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Corollary I:
Cov( ̃𝛽𝑘) = Cov( ̃𝛽) + (id − 𝑆lin)

−1𝑆0 + 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

(id − 𝑆lin)
−1𝑆0 is the variance of the “centered orthogonal noise”

from earlier proposition
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Second-Order Dynamics III

Theorem
For sufficiently small 𝛼 ∶= 𝛼(𝕏, 𝑝), 𝑆0 ∶= 𝑆(0), and 𝑆lin ∶= 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Corollary I:
Cov( ̃𝛽𝑘) = Cov( ̃𝛽) + (id − 𝑆lin)

−1𝑆0 + 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Unfortunately, (id − 𝑆lin)
−1𝑆0 > 0 in general, so ̃𝛽𝑘 does not attain

the optimal variance!
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Second-Order Dynamics III
Theorem
For sufficiently small 𝛼 ∶= 𝛼(𝕏, 𝑝), 𝑆0 ∶= 𝑆(0), and 𝑆lin ∶= 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Corollary I:
Cov( ̃𝛽𝑘) = Cov( ̃𝛽) + (id − 𝑆lin)

−1𝑆0 + 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Unfortunately, (id − 𝑆lin)
−1𝑆0 > 0 in general, so ̃𝛽𝑘 does not attain

the optimal variance!
Corollary II:

In general, ̃𝛽𝑘 does not converge to ̃𝛽 in 𝐿2 since

Tr(𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t]) = 𝔼[‖ ̃𝛽𝑘 − ̃𝛽‖22].
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Conclusion

Our techniques/results show:
Second-order analysis of gradient descent with dropout is already
rather technical in the linear model.
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Elementary — yet complicated — linear algebra is necessary at
first to compute the basic objects, then a more abstract
perspective can be applied.
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Our techniques/results show:
Second-order analysis of gradient descent with dropout is already
rather technical in the linear model.
Elementary — yet complicated — linear algebra is necessary at
first to compute the basic objects, then a more abstract
perspective can be applied.
Second-order dynamics are only visible through direct study of
on-line iterates.
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Conclusion

Our techniques/results show:
Second-order analysis of gradient descent with dropout is already
rather technical in the linear model.
Elementary — yet complicated — linear algebra is necessary at
first to compute the basic objects, then a more abstract
perspective can be applied.
Second-order dynamics are only visible through direct study of
on-line iterates.
Often cited connection with ridge regression is more nuanced for
the variance.
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Extensions/Open Problems

Neural networks?
Connections with other forms of algorithmic regularization?
Randomized design and iteration dependent learning rate?
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For more details:
G.C., Sophie Langer, and Johannes Schmidt-Hieber. “Dropout
Regularization Versus ℓ2-Penalization in the Linear Model.” arXiv
preprint: 2306.10529 (2023).



For more details:
G.C., Sophie Langer, and Johannes Schmidt-Hieber. “Dropout
Regularization Versus ℓ2-Penalization in the Linear Model.” arXiv
preprint: 2306.10529 (2023).

Thanks for your attention!



Ruppert-Polyak Averaging

Theorem
Running average ̃𝛽rp𝑘 ∶= 1

𝑘
∑𝑘

ℓ=1
̃𝛽ℓ; for sufficiently small 𝛼 ∶= 𝛼(𝕏, 𝑝)

‖
‖‖𝔼[(

̃𝛽rp𝑘 − ̃𝛽)( ̃𝛽rp𝑘 − ̃𝛽)t]‖‖‖ = 𝑂(𝑘−1)
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Ruppert-Polyak Averaging

Theorem
Running average ̃𝛽rp𝑘 ∶= 1

𝑘
∑𝑘

ℓ=1
̃𝛽ℓ; for sufficiently small 𝛼 ∶= 𝛼(𝕏, 𝑝)

‖
‖‖𝔼[(

̃𝛽rp𝑘 − ̃𝛽)( ̃𝛽rp𝑘 − ̃𝛽)t]‖‖‖ = 𝑂(𝑘−1)

Intuition:
“Centered orthogonal noise” is averaged away; at the price of
slower convergence
̃𝛽rp𝑘 converges to ̃𝛽 in 𝐿2
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