Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model

Gabriel Clara Sophie Langer Johannes Schmidt-Hieber

Department of Applied Mathematics, Universiteit Twente

November 9, 2023

UNIVERSITY OF TWENTE.

Joint work with Sophie Langer and Johannes Schmidt-Hieber

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." *arXiv* preprint: 2306.10529 (2023).

• Neural network with activation σ

$$f(x) = T_{W^{(L)}, v^{(L)}} \circ \dots \circ T_{W^{(1)}, v^{(1)}}(x)$$

where
$$T_{W^{(\ell)}, v^{(\ell)}} : z \mapsto \sigma \Big(W^{(\ell)} z + v^{(\ell)} \Big).$$

• Neural network with activation σ

$$f(x) = T_{W^{(L)}, v^{(L)}} \circ \dots \circ T_{W^{(1)}, v^{(1)}}(x)$$

where
$$T_{W^{(\ell)},v^{(\ell)}}$$
: $z \mapsto \sigma (W^{(\ell)}z + v^{(\ell)}).$

• During each iteration of training, dropout replaces each $T_{W^{(\ell)},v^{(\ell)}}$ with a sample from

$$z \mapsto \sigma \Big(W^{(\ell)} D^{(\ell)} z + v^{(\ell)} \Big)$$

where $D_{ii}^{(\ell)} \stackrel{i.i.d.}{\sim} \text{Ber}(p)$.

Figure: Regular neuron (left) and one sample of a neuron with dropout (right).

2 Linear Regression as a Toy Model

Canonical piece of wisdom: adding dropout noise to linear regression performs ridge regression ℓ_2 -penalization/Thikhonov regularization!

Proposition (Srivastava et al. Section 9)

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} Ber(p)$; linear model $Y = X\beta_{\star} + \varepsilon$ with standard normal noise independent of D, then

$$\underset{\beta}{\arg\min} \mathbb{E}\Big[\|Y - XD\beta\|_2^2 \mid Y \Big] = \Big(pX^{\mathsf{t}}X + (1-p)\mathrm{Diag}(X^{\mathsf{t}}X) \Big)^{-1}X^{\mathsf{t}}Y$$

Proposition (Srivastava et al. Section 9)

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} Ber(p)$; linear model $Y = X\beta_{\star} + \varepsilon$ with standard normal noise independent of D, then

$$\underset{\beta}{\arg\min} \mathbb{E}\Big[\|Y - XD\beta\|_2^2 \mid Y \Big] = \left(pX^{\mathsf{t}}X + (1-p)\mathrm{Diag}(X^{\mathsf{t}}X) \right)^{-1} X^{\mathsf{t}}Y =: \tilde{\beta}$$

Canonical piece of wisdom: adding dropout noise to linear regression performs ridge regression ℓ_2 -penalization/Thikhonov regularization!

Some Definitions

• Important matrices:

$$\begin{split} & \mathbb{X} := X^{\mathsf{t}} X \\ & \overline{\mathbb{X}} := \mathbb{X} - \mathrm{Diag}(\mathbb{X}) \\ & \mathbb{X}_p := p \mathbb{X} + (1 - p) \mathrm{Diag}(\mathbb{X}) \end{split}$$

Some Definitions

• Important matrices:

$$\begin{split} & \mathbb{X} := X^{\mathsf{t}} X \\ & \overline{\mathbb{X}} := \mathbb{X} - \mathrm{Diag}(\mathbb{X}) \\ & \mathbb{X}_p := p \mathbb{X} + (1-p) \mathrm{Diag}(\mathbb{X}) \\ & (\mathbb{X}_p \text{ invertible if } \min_i \mathbb{X}_{ii} > 0) \end{split}$$

Some Definitions

• Important matrices:

$$\begin{split} & \mathbb{X} := X^{\mathsf{t}} X \\ & \overline{\mathbb{X}} := \mathbb{X} - \mathrm{Diag}(\mathbb{X}) \\ & \mathbb{X}_p := p \mathbb{X} + (1 - p) \mathrm{Diag}(\mathbb{X}) \end{split}$$

• Averaged dropout estimator: $\tilde{\beta} = X_p^{-1} X^t Y$ (minimizer from proposition)

Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

$$\beta_{k+1} = \beta_k - \frac{\alpha}{2} \nabla_{\beta_k} \left\| Y - X \beta_k \right\|_2^2$$

Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

$$\beta_{k+1} = \beta_k - \frac{\alpha}{2} \nabla_{\beta_k} \left\| Y - X \beta_k \right\|_2^2$$

On-Line Dropout:

$$\tilde{\beta}_{k+1} = \tilde{\beta}_k - \frac{\alpha}{2} \nabla_{\tilde{\beta}_k} \left\| Y - X D_{k+1} \tilde{\beta}_k \right\|_2^2$$

A new *i.i.d.* dropout matrix is sampled every iteration!

Incorporating Dropout with Gradient Descent

On-Line Dropout:

$$\tilde{\beta}_{k+1} = \tilde{\beta}_k - \frac{\alpha}{2} \nabla_{\tilde{\beta}_k} \left\| Y - X D_{k+1} \tilde{\beta}_k \right\|_2^2$$

A new *i.i.d.* dropout matrix is sampled every iteration!

Questions:

- Convergence towards $\tilde{\beta}$?
- Statistical optimality?

Convergence of Expectation

Proposition

If $\alpha p \|X\| < 1$ and $\min_i X_{ii} > 0$, then

$$\left\|\mathbb{E}[\tilde{\beta}_{k} - \tilde{\beta}]\right\|_{2} \leq \left\|I - \alpha p \mathbb{X}_{p}\right\|^{k} \cdot \left\|\mathbb{E}[\tilde{\beta}_{0} - \tilde{\beta}]\right\|_{2}$$

Second Moment Dynamics

Lemma

Up to exponentially decaying remainder ρ_k , second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^{\mathsf{t}}\Big] = S\!\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^{\mathsf{t}}\Big]\Big) + \rho_{k-1}$$

pushed forward by affine operator S on matrices.

Second Moment Dynamics

Lemma

Up to exponentially decaying remainder ρ_k , second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^{\mathrm{t}}\Big] = S\!\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^{\mathrm{t}}\Big]\Big) + \rho_{k-1}$$

pushed forward by affine operator S on matrices.

Intuition:

- Interaction between GD dynamics and on-line dropout encapsulated in *S*
- $\bullet\,$ This structure remains hidden when considering averaged estimator $\tilde{\beta}\,$

Second Moment Dynamics

Lemma

Up to exponentially decaying remainder ρ_k , second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^t\Big] = S\!\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^t\Big]\Big) + \rho_{k-1}$$

pushed forward by affine operator S on matrices.

Exact Definition:

$$\begin{split} S(A) &= \left(I - \alpha p \mathbb{X}_p\right) A \left(I - \alpha p \mathbb{X}_p\right) + \alpha^2 p (1 - p) \mathrm{Diag}(\mathbb{X}_p A \mathbb{X}_p) \\ &+ \alpha^2 p^2 (1 - p)^2 \overline{\mathbb{X}} \odot \left(A + \mathbb{E}[\tilde{\beta} \tilde{\beta}^{\mathrm{t}}]\right) \odot \overline{\mathbb{X}} \\ &+ \alpha^2 p^2 (1 - p) \left(\overline{\mathbb{X}} \mathrm{Diag}(A + \mathbb{E}[\tilde{\beta} \tilde{\beta}^{\mathrm{t}}]) \overline{\mathbb{X}}\right)_p \\ &+ \alpha^2 p^2 (1 - p) \left(\overline{\mathbb{X}} \mathrm{Diag}(\mathbb{X}_p A) + \mathrm{Diag}(\mathbb{X}_p A) \overline{\mathbb{X}}\right) \end{split}$$

Convergence of Variance

Theorem

For sufficiently small $\alpha := \alpha(X, p)$, $S_0 := S(0)$, and $S_{\text{lin}} := S - S_0$

$$\operatorname{Cov}(\tilde{\beta}_k) = \operatorname{Cov}(\tilde{\beta}) + (\operatorname{id} - S_{\operatorname{lin}})^{-1} S_0 + O(k \|I - \alpha p \mathbb{X}_p\|^{k-1})$$

Convergence of Variance

Theorem

For sufficiently small $\alpha := \alpha(X, p)$, $S_0 := S(0)$, and $S_{\text{lin}} := S - S_0$

$$\operatorname{Cov}(\tilde{\beta}_k) = \operatorname{Cov}(\tilde{\beta}) + (\operatorname{id} - S_{\operatorname{lin}})^{-1} S_0 + O(k \|I - \alpha p X_p\|^{k-1})$$

Notes:

• Limit characterized by intercept S_0 and linear part S_{lin} of S

Convergence of Variance

Theorem

For sufficiently small $\alpha := \alpha(X, p)$, $S_0 := S(0)$, and $S_{\text{lin}} := S - S_0$

$$\operatorname{Cov}(\tilde{\beta}_k) = \operatorname{Cov}(\tilde{\beta}) + (\operatorname{id} - S_{\operatorname{lin}})^{-1} S_0 + O(k \|I - \alpha p \mathbb{X}_p\|^{k-1})$$

Corollary:

• Unfortunately,
$$(id - S_{lin})^{-1}S_0 \neq 0$$
 in general, so

$$\operatorname{Tr}\left(\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathrm{t}}\right]\right)=\mathbb{E}\left[\|\tilde{\beta}_{k}-\tilde{\beta}\|_{2}^{2}\right]>0.$$

For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." *arXiv* preprint: 2306.10529 (2023).

For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." *arXiv* preprint: 2306.10529 (2023).

Thanks for your attention!