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@ Dropout in Neural Networks



Dropout in Neural Networks

@ Neural network with activation ¢
F) = Tpw yw ° - ° Ty ,m(x)

where TW(é’),v(é') A O'(W(f)z + U(é)).
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Dropout in Neural Networks

@ Neural network with activation o
FX) = Tyw yw o - ° Ty, (x)

where Ty e 2 O'(W(é)Z + U(é)).

@ During each iteration of training, dropout replaces each Ty )
with a sample from

zZ - o(W(g)D(g)z + v(g))

where Di(f) S Ber(p).
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Dropout in Neural Networks

Figure: Regular neuron (left) and one sample of a neuron with dropout (right).
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© Linear Regression as a Toy Model



Why Study the Linear Model?

Canonical piece of wisdom: adding dropout noise to linear regression
performs ridge regression/¢,-penalization/Thikhonov regularization
in expectation!
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; s Ber(p); linear model Y = X3, + ¢ with standard
normal noise independent of D, then

argminE[ Y — XDIZ | Y| = (pX'X + (1 - P)Diag(th))‘l Xty
8
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Why Study the Linear Model?

Proposition (Srivastava et al.9)

9N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R, Salakhutdinov. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. JMLR. 2014.

Dropout matrix D;; S Ber(p); linear model Y = X3, + ¢ with standard
normal noise independent of D, then

arg min [E[||Y — XDBJ? | Y] = (pXtX +(1 - p)Diag(XtX))—IXtY
B
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; < Ber(p); linear model Y = X3, + ¢ with standard
normal noise independent of D, then

arg min [E[||Y — XDBI3 | Y] = (pxX +(1- p)Diag(XtX))_lX"Y =:
8
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; s Ber(p); linear model Y = X3, + ¢ with standard
normal noise independent of D, then

argénin [E[||Y — XDBI? | Y] =: f

Intuition:
@ Re-scaled minimizer of the averaged loss performs weighted ridge
regression:

ph = argénin(llY - Xgl3+(;-1)- “\/MBHZ)

@ Small p = strong regularization
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; o Ber(p); linear model Y = X3, + ¢ with standard
normal noise independent of D, then

arg;nin [E[||Y — XDBJ? | Y] = f

Problems:
@ No explicit gradient descent
@ No access to variance
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; < Ber(p); linear model Y = X3, + ¢ with standard
normal noise independent of D, then

argénin [E[||Y-XD/3||§ | Y] = f

Problems:
@ No explicit gradient descent
@ No access to variance

@ Conditional expectation E[ - | Y] represents loss of information
= [ may not fully capture gradient descent dynamics
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© Gradient Descent with Dropout



Some Definitions

@ Important matrices:

= XX
:= X — Diag(X)
X, 1= pX+ (1 — p)Diag(X)

Xl X
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Some Definitions

@ Important matrices:

X 1= XX
X := X — Diag(X)
X, := pX+ (1 — p)Diag(X)

(X, invertible if min; X;; > 0)
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Some Definitions

@ Important matrices:

=X'X
= X — Diag(X)
X, 1= pX+ (1 — p)Diag(X)

X
X :

@ Averaged dropout estimator: § = X5 XY (minimizer from
proposition)
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Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

Bie+1 = B — %Vﬁ’k”Y —Xﬁk“z
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Incorporating Dropout with Gradient Descent

Standard Gradient Descent:
a 2
Bies1 = B — Evﬁk”Y —Xﬁkuz
On-Line Dropout:
~ ~ 104 ~ 12
Bice1 = Pic — zvgk”Y - XDk+118kH2

A new i.i.d. dropout matrix is sampled every iteration!
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Incorporating Dropout with Gradient Descent

On-Line Dropout:
Brsr = P — %ng”Y _XDk+15~kHz

A new i.i.d. dropout matrix is sampled every iteration!

Questions:
@ Convergence towards §?
@ Statistical optimality?
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Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then

Jetec =21, <~ [eigo 2],
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Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then

[et6c~ 81, <1 - aps| - <1641,

Intuition:
@ Exponential decay, as in regular gradient descent
@ Expected learning rate ap
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Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then

Jetec=2), <~ [eiso 2],

Idea of proof:
@ Rewrite

Bx — B = (I — aDXDy)(Bi—1 — B) + aDiX(pI — Dy )B
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Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then

[et6c~ 81l <[ - aws| - <1641,

Idea of proof:
@ Rewrite

Bk — B = (I — aDXDy)(Bi—1 — B) + aDyX(pI — Dy )B
@ Compute

E[DkXDy | = pX,
E[DeX(pI — Dy)] =0
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Convergence of Expectation

Proposition
If ap|X| < 1 and min; X;; > 0, then

1581, < e[~ a1,

Idea of proof:
@ Rewrite

B — B = (I — aDXDy)(B—1 — B) + aDyX(pI — Dy )8
@ Compute
E[DkXDy | = pX,
E[DeX(pI — D) =0

@ Now E[By — 8] = (I — apX,)E[Bk—1 — B]; finish with induction!
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° Second Moment Dynamics



Second Moment Dynamics |

Theorem (Informal Statement)

Affine estimator B, := BY + a (with B and a independent of Y) and
linear estimator 5, := AX'Y (with A deterministic), then

E[Bus] = E[a] => Cov(Bast — Ba,Ba) ~ 0
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Second Moment Dynamics |

Theorem (Informal Statement)

Affine estimator B, := BY + a (with B and a independent of Y) and
linear estimator 5, := AX'Y (with A deterministic), then

E[Bui] ~ E[Ba] = Cov(Bu — BaBa) ~ 0

Intuition:
@ If B, is (nearly) unbiased for §,, then

Bair = B4 + centered orthogonal noise
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Second Moment Dynamics |

Theorem (Informal Statement)

Affine estimator S, := BY + a (with B and a independent of Y) and
linear estimator 8, := AX'Y (with A deterministic), then

E[Bat] ~ E[Ba] => Cov(Bast — Pa,Ba) ~ 0

Intuition:
@ If B, is (nearly) unbiased for §,, then
Bait = B4 + centered orthogonal noise

@ Gauss-Markov like corollary; if B,Y + a; asymptotically unbiased
for B4, then

lim inf Cov(BY + ay) > Cov(B,)

k— o0
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Second Moment Dynamics |

Theorem (Informal Statement)

Affine estimator /Saff = BY + a (with B and a independent of Y) and
linear estimator 3, := AX'Y (with A deterministic), then

E[Batt] = E[Ba] => CoV(Bast — Ba,Ba) = 0

Dropout-specific:

@ Dropout iterates gy are affine estimators asymptotically unbiased
for B

@ Cov(p) represents fundamental lower bound
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Second Moment Dynamics Il

Lemma

Up to exponentially decaying remainder py, second moment of B, —
evolves as affine dynamical system

E[(8c -~ BB — B)'] = S(E[(Ber = B)Brr = B)]) + 1

pushed forward by affine operator S on matrices.
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Second Moment Dynamics Il

Lemma

Up to exponentially decaying remainder py, second moment of B — f
evolves as affine dynamical system

E[(8 — B)(Bi — )] = 5(E[(Becs — H)Bes = B)]) + 1

pushed forward by affine operator S on matrices.

Intuition;

@ Interaction between GD dynamics and on-line dropout
encapsulated in S

@ This structure remains hidden when considering averaged
estimator 8
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Second Moment Dynamics Il

Lemma

Up to exponentially decaying remainder py, second moment of B, —
evolves as affine dynamical system

€[(e = BB — B)'] = S(E[(Ber = B)(Brr = B)]) + 1

pushed forward by affine operator S on matrices.

Exact Definition:
S(A) = (I — apXp)A(I — apX,) + a®p(1 — p)Diag(X,AX,)
+a2p(1— )X ® (A + [E[Eﬁt]) oX

+ a?p*(1 - p)(XDiag(A + [E[B,éﬂ)i)
p

+a?p?(1 — p)(XDiag(XPA) + Diag(XpA)X)
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Second Moment Dynamics Il

Lemma

Up to exponentially decaying remainder py, second moment of B, — f
evolves as affine dynamical system

E[(8 — £)(Be — £)] = S(E[(Bi-s ~ B)Bis = B)]) + 1

pushed forward by affine operator S on matrices.

Notes on Proof:
@ S has complex expression due to dependence structure in

B — B = (I — aDXDy)(Bi—1 — B) + aDX(pI — Dy )B

@ Proof requires computing 4" order moments of the form
E[DyADyBD; CDy|
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Second Moment Dynamics Il

Theorem
For sufficiently small « := a(X, p), Sy :=S(0), and S, :=S— S,

H[E[(ng - 5)(& — B)t] — (id _ Slin)_lso

= o(k||1 - Ochp”k_l)
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Second Moment Dynamics Il

Theorem
For sufficiently small « := a(X, p), Sy := S(0), and S,,, :=S— S,

H[E[(ﬁk_g)(gk_ )] (id—5..)" SOH k||I X[ 1)

Notes:

@ Limit characterized by intercept S, and linear part S;;, of S
@ Small « = operator norm of Sy;, less than 1
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Second Moment Dynamics I

Theorem
For sufficiently small « := a(X, p), Sy := S(0), and 5,,, :=S— S,

[ - )8 - 8] - 12 = 5.) s
Corollary I

o Cov(By) = Cov(B) + (id — Spn) ' So + o(k||1 - ocpxpuk—l)

= O(KkllT — apX, ")

o (id- Sﬁn)_lso is the variance of the “centered orthogonal noise”
from earlier proposition
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Second Moment Dynamics I

Theorem
For sufficiently small « := a(X, p), Sy := S(0), and 5,,, :=S— S,

[ - )8 - 8] - 12 = 5.) s
Corollary I

o Cov(By) = Cov(B) + (id — Spn) ' So + o(k||1 - ocpxpuk—l)

= O(KkllT — apX, ")

@ Unfortunately, (id — Shn)_ls0 # 0 in general, so B, does not attain
the optimal variance!

G. Clara (UTwente) Dropout in the Linear Model March 15, 2023 9/1



Second Moment Dynamics I
Theorem

For sufficiently small « := a(X, p), Sy := S(0), and S, :=S— S,
- ~ ;& ~t . L\l
|E[ B - )8 - B)] - 12 = 5..) s
Corollary I
® Cov(Bi) = Cov(B) + (id — Sn) ™ So + O(KIIT — apX <)

@ Unfortunately, (id — Slin)_ls0 # 0 in general, so B, does not attain
the optimal variance!

Corollary II:

= O(Kkllr = apX, ")

@ In general, B, does not converge to § in L, since
([ (B - B)(B - )] = E[16¢ - £13].
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Conclusion

Our techniques/results show:

@ Second-order analysis of gradient descent with dropout is already
rather technical in the linear model.
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Conclusion

Our techniques/results show:

@ Second-order analysis of gradient descent with dropout is already
rather technical in the linear model.

@ Elementary — yet complicated — linear algebra is necessary at
first to compute the basic objects, then a more abstract
perspective can be applied.
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Conclusion

Our techniques/results show:

@ Second-order analysis of gradient descent with dropout is already
rather technical in the linear model.

@ Elementary — yet complicated — linear algebra is necessary at
first to compute the basic objects, then a more abstract
perspective can be applied.

@ Second-order dynamics are only visible through direct study of
on-line iterates.
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Conclusion

Our techniques/results show:

@ Second-order analysis of gradient descent with dropout is already
rather technical in the linear model.

@ Elementary — yet complicated — linear algebra is necessary at
first to compute the basic objects, then a more abstract
perspective can be applied.

@ Second-order dynamics are only visible through direct study of
on-line iterates.

@ Often cited connection with ridge regression is more nuanced for
the variance.
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Extensions/Open Problems

@ Neural networks?
@ Connections with other forms of algorithmic regularization?
@ Randomized design and iteration dependent learning rate?
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For more details:
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Regularization Versus ¢,-Penalization in the Linear Model.” arXiv
preprint: 2306.10529 (2023).
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Thanks for your attention!
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