Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model

Gabriel Clara Sophie Langer Johannes Schmidt-Hieber

Department of Applied Mathematics, Universiteit Twente

March 15, 2023

UNIVERSITY **OF TWENTE.**

Joint work with Sophie Langer and Johannes Schmidt-Hieber

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ² -Penalization in the Linear Model." *arXiv preprint: 2306.10529* (2023).

• Neural network with activation σ

$$
f(x) = T_{W^{(L)}, v^{(L)}} \circ \cdots \circ T_{W^{(1)}, v^{(1)}}(x)
$$

where
$$
T_{W^{(\ell)}, v^{(\ell)}}
$$
: $z \mapsto \sigma(W^{(\ell)}z + v^{(\ell)})$.

 \bullet Neural network with activation σ

$$
f(x) = T_{W^{(L)}, v^{(L)}} \circ \cdots \circ T_{W^{(1)}, v^{(1)}}(x)
$$

where $T_{W^{(\ell)},v^{(\ell)}}$: $z \mapsto \sigma(W^{(\ell)}z + v^{(\ell)})$.

O During each iteration of training, dropout replaces each $T_{w(\ell),v(\ell)}$ with a sample from

$$
z \mapsto \sigma\!\!\left(W^{(\ell)}D^{(\ell)}z + v^{(\ell)}\right)
$$

where $D^{(\ell)}_{ii}$ ii $\stackrel{i.i.d.}{\sim} \text{Ber}(p).$

Figure: Regular neuron (left) and one sample of a neuron with dropout (right).

[Linear Regression as a Toy Model](#page-7-0)

Canonical piece of wisdom: adding dropout noise to linear regression performs ridge regression/ ℓ_2 -penalization/Thikhonov regularization in expectation!

Proposition (Srivastava et al.)

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} \text{Ber}(p)$ *; linear model* $Y = X\beta_{\star} + \varepsilon$ *with standard normal noise independent of D, then*

$$
\arg\min_{\beta} \mathbb{E}\Big[\|Y - X\mathcal{D}\beta\|_2^2 \mid Y\Big] = \Big(pX^{\dagger}X + (1-p)\text{Diag}(X^{\dagger}X)\Big)^{-1}X^{\dagger}Y
$$

Proposition (Srivastava et al.*^a*)

*^a*N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R, Salakhutdinov. *Dropout: A Simple Way to Prevent Neural Networks from Overfitting.* JMLR. 2014.

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} \text{Ber}(p)$ *; linear model* $Y = X\beta_{\star} + \varepsilon$ *with standard normal noise independent of D, then*

$$
\arg\min_{\beta} \mathbb{E}\Big[\|Y - X\mathcal{D}\beta\|_2^2 \mid Y\Big] = \Big(pX^{\mathsf{t}}X + (1-p)\text{Diag}(X^{\mathsf{t}}X)\Big)^{-1}X^{\mathsf{t}}Y
$$

Proposition (Srivastava et al.)

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} \text{Ber}(p)$ *; linear model* $Y = X\beta_{\star} + \varepsilon$ with standard *normal noise independent of D, then*

$$
\arg\min_{\beta} \mathbb{E}\big[\|Y - X\mathcal{D}\beta\|_2^2 \mid Y\big] = \left(pX^{\dagger}X + (1-p)\text{Diag}(X^{\dagger}X)\right)^{-1}X^{\dagger}Y =: \tilde{\beta}
$$

Proposition (Srivastava et al.)

Dropout matrix $D_{ii} \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p)$ *; linear model* $Y = X\beta_{\star} + \varepsilon$ *with standard normal noise independent of D, then*

$$
\arg\min_{\beta} \mathbb{E}\Big[\|Y - XD\beta\|_2^2 \mid Y\Big] =: \tilde{\beta}
$$

Intuition:

Re-scaled minimizer of the averaged loss performs weighted ridge regression:

$$
p\tilde{\beta} = \arg\min_{\beta} \left(\|Y - X\beta\|_2^2 + \left(\frac{1}{p} - 1\right) \cdot \left\|\sqrt{\text{Diag}(X^{\mathsf{t}}X)}\beta\right\|_2^2 \right)
$$

• Small $p \implies$ strong regularization

Proposition (Srivastava et al.)

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} \text{Ber}(p)$ *; linear model* $Y = X\beta_{\star} + \varepsilon$ *with standard normal noise independent of D, then*

$$
\argmin_{\beta} \mathbb{E}\Big[\|Y - XD\beta\|_2^2 \mid Y\Big] =: \tilde{\beta}
$$

Problems:

- No explicit gradient descent
- No access to variance

Proposition (Srivastava et al.)

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} \text{Ber}(p)$ *; linear model* $Y = X\beta_{\star} + \varepsilon$ with standard *normal noise independent of D, then*

$$
\arg\min_{\beta} \mathbb{E}\Big[\|Y - XD\beta\|_2^2 \mid Y\Big] =: \tilde{\beta}
$$

Problems:

- No explicit gradient descent
- No access to variance
- Conditional expectation $\mathbb{E}[\cdot | Y]$ represents loss of information $\implies \tilde{\beta}$ may not fully capture gradient descent dynamics

Some Definitions

o Important matrices:

$$
\begin{aligned}\n&\times := X^{\mathsf{t}} X \\
&\overline{\times} := \mathbb{X} - \text{Diag}(\mathbb{X}) \\
&\times_p := p \mathbb{X} + (1 - p) \text{Diag}(\mathbb{X})\n\end{aligned}
$$

Some Definitions

· Important matrices:

$$
\mathbb{X} := X^t X
$$

$$
\overline{\mathbb{X}} := \mathbb{X} - \text{Diag}(\mathbb{X})
$$

$$
\mathbb{X}_p := p \mathbb{X} + (1 - p) \text{Diag}(\mathbb{X})
$$

$$
(\mathbb{X}_p \text{ invertible if } \min_i \mathbb{X}_{ii} > 0)
$$

Some Definitions

· Important matrices:

$$
\mathbb{X} := X^t X
$$

$$
\overline{\mathbb{X}} := \mathbb{X} - \text{Diag}(\mathbb{X})
$$

$$
\mathbb{X}_p := p\mathbb{X} + (1 - p)\text{Diag}(\mathbb{X})
$$

Averaged dropout estimator: $\tilde{\beta} = \mathbb{X}_p^{-1}X^{\mathrm{t}} Y$ (minimizer from proposition)

Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

$$
\beta_{k+1} = \beta_k - \frac{\alpha}{2} \nabla_{\beta_k} \| Y - X \beta_k \|_2^2
$$

Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

$$
\beta_{k+1} = \beta_k - \frac{\alpha}{2} \nabla_{\beta_k} \left\| Y - X \beta_k \right\|_2^2
$$

On-Line Dropout:

$$
\tilde{\beta}_{k+1} = \tilde{\beta}_k - \frac{\alpha}{2} \nabla_{\tilde{\beta}_k} \left\| Y - X D_{k+1} \tilde{\beta}_k \right\|_2^2
$$

A new *i.i.d.* dropout matrix is sampled every iteration!

Incorporating Dropout with Gradient Descent

On-Line Dropout:

$$
\tilde{\beta}_{k+1} = \tilde{\beta}_k - \frac{\alpha}{2} \nabla_{\tilde{\beta}_k} \left\| Y - X D_{k+1} \tilde{\beta}_k \right\|_2^2
$$

A new *i.i.d.* dropout matrix is sampled every iteration!

Questions:

- Convergence towards $\tilde{\beta}$?
- Statistical optimality?

Proposition

If $\alpha p \|\mathbb{X}\|$ < 1 and $\min_i \mathbb{X}_{ii} > 0$, then

$$
\left\|\mathbb{E}\left[\tilde{\beta}_k - \tilde{\beta}\right]\right\|_2 \le \left\|I - \alpha p \mathbb{X}_p\right\|^k \cdot \left\|\mathbb{E}\left[\tilde{\beta}_0 - \tilde{\beta}\right]\right\|_2
$$

Proposition

If $\alpha p \|\mathbb{X}\|$ < 1 and $\min_i \mathbb{X}_{ii} > 0$, then

$$
\left\|\mathbb{E}[\tilde{\beta}_k - \tilde{\beta}]\right\|_2 \le \left\|I - \alpha p \times_p \right\|^k \cdot \left\|\mathbb{E}[\tilde{\beta}_0 - \tilde{\beta}]\right\|_2
$$

Intuition:

- Exponential decay, as in regular gradient descent
- Expected learning rate αp

Proposition

If $\alpha p \|\mathbb{X}\|$ < 1 and $\min_i \mathbb{X}_{ii} > 0$, then

$$
\left\|\mathbb{E}\left[\tilde{\beta}_k - \tilde{\beta}\right]\right\|_2 \le \left\|I - \alpha p \times_p\right\|^k \cdot \left\|\mathbb{E}\left[\tilde{\beta}_0 - \tilde{\beta}\right]\right\|_2
$$

Idea of proof:

• Rewrite

$$
\tilde{\beta}_k - \tilde{\beta} = (I - \alpha D_k \times D_k)(\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_k \overline{\times} (pI - D_k)\tilde{\beta}
$$

Proposition

If $\alpha p \|\mathbb{X}\|$ < 1 and $\min_i \mathbb{X}_{ii} > 0$, then

$$
\left\|\mathbb{E}[\tilde{\beta}_k - \tilde{\beta}]\right\|_2 \le \left\|I - \alpha p \times_p \right\|^k \cdot \left\|\mathbb{E}[\tilde{\beta}_0 - \tilde{\beta}]\right\|_2
$$

Idea of proof:

• Rewrite

$$
\tilde{\beta}_k - \tilde{\beta} = (I - \alpha D_k \times D_k)(\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_k \overline{\times} (pI - D_k)\tilde{\beta}
$$

• Compute

$$
\mathbb{E}[D_k \times D_k] = p \times_p
$$

$$
\mathbb{E}[D_k \overline{\times}(pI - D_k)] = 0
$$

Proposition

If $\alpha p \ll 1$ *and* $\min_i \mathcal{X}_{ii} > 0$, then

$$
\left\|\mathbb{E}[\tilde{\beta}_k - \tilde{\beta}]\right\|_2 \le \left\|I - \alpha p \times_p \right\|^k \cdot \left\|\mathbb{E}[\tilde{\beta}_0 - \tilde{\beta}]\right\|_2
$$

Idea of proof:

• Rewrite

$$
\tilde{\beta}_k - \tilde{\beta} = (I - \alpha D_k \times D_k)(\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_k \overline{\times} (pI - D_k)\tilde{\beta}
$$

• Compute

$$
\mathbb{E}[D_k \times D_k] = p \times_p
$$

$$
\mathbb{E}[D_k \overline{\times}(pI - D_k)] = 0
$$

Now $\mathbb{E}\big[\tilde{\beta}_k - \tilde{\beta} \big] = (I - \alpha p \mathbb{X}_p) \mathbb{E}\big[\tilde{\beta}_{k-1} - \tilde{\beta} \big];$ finish with induction!

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\mathrm{aff}}:= BY + a$ (with B and a independent of Y) and l inear estimator $\tilde{\beta_A} := A X^{\mathrm t} Y$ (with A deterministic), then

$$
\mathbb{E} \big[\tilde{\beta}_{\mathrm{aff}} \big] \approx \mathbb{E} \big[\tilde{\beta}_A \big] \implies \mathrm{Cov} \big(\tilde{\beta}_{\mathrm{aff}} - \tilde{\beta}_A, \tilde{\beta}_A \big) \approx 0
$$

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\mathrm{aff}}:= BY + a$ (with B and a independent of Y) and l inear estimator $\tilde{\beta_A} := A X^{\text{t}} Y$ (with A deterministic), then

$$
\mathbb{E}\big[\tilde{\beta}_{\rm aff}\big] \approx \mathbb{E}\big[\tilde{\beta}_A\big] \implies {\rm Cov} \big(\tilde{\beta}_{\rm aff}-\tilde{\beta}_A,\tilde{\beta}_A\big) \approx 0
$$

Intuition:

If $\tilde{\beta}_{\rm aff}$ is (nearly) unbiased for $\tilde{\beta}_A$, then

 $\tilde{\beta}_\text{aff}\approx\tilde{\beta}_A+$ centered orthogonal noise

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\mathrm{aff}}:= BY + a$ (with B and a independent of Y) and l inear estimator $\tilde{\beta_A} := A X^{\text{t}} Y$ (with A deterministic), then

$$
\mathbb{E} \big[\tilde{\beta}_{\mathrm{aff}} \big] \approx \mathbb{E} \big[\tilde{\beta}_A \big] \implies \mathrm{Cov} \big(\tilde{\beta}_{\mathrm{aff}} - \tilde{\beta}_A, \tilde{\beta}_A \big) \approx 0
$$

Intuition:

If $\tilde{\beta}_{\rm aff}$ is (nearly) unbiased for $\tilde{\beta}_A$, then

 $\tilde{\beta}_\mathrm{aff}\approx\tilde{\beta_A}+$ centered orthogonal noise

• Gauss-Markov like corollary; if $B_k Y + a_k$ asymptotically unbiased for $\tilde{\beta_A}$, then

$$
\liminf_{k \to \infty} \text{Cov}(B_k Y + a_k) \geq \text{Cov}(\tilde{\beta}_A)
$$

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{\mathrm{aff}}:= BY + a$ (with B and a independent of Y) and l inear estimator $\tilde{\beta_A} := A X^{\text{t}} Y$ (with A deterministic), then

$$
\mathbb{E} \big[\tilde{\beta}_{\mathrm{aff}} \big] \approx \mathbb{E} \big[\tilde{\beta}_A \big] \implies \mathrm{Cov} \big(\tilde{\beta}_{\mathrm{aff}} - \tilde{\beta}_A, \tilde{\beta}_A \big) \approx 0
$$

Dropout-specific:

- Dropout iterates $\tilde{\beta_k}$ are affine estimators asymptotically unbiased for β
- \bullet Cov($\tilde{\beta}$) represents fundamental lower bound

Lemma

Up to exponentially decaying remainder $\rho_{\bm{k}}$, second moment of $\tilde{\beta}_k - \tilde{\beta}$ *evolves as affine dynamical system*

$$
\mathbb{E}\Big[\big(\tilde{\beta}_k-\tilde{\beta}\big)\big(\tilde{\beta}_k-\tilde{\beta}\big)^{\mathrm{t}}\Big]=S\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)^{\mathrm{t}}\Big]\Big)+\rho_{k-1}
$$

pushed forward by affine operator on matrices.

Lemma

Up to exponentially decaying remainder $\rho_{\bm{k}}$, second moment of $\tilde{\beta}_k - \tilde{\beta}$ *evolves as affine dynamical system*

$$
\mathbb{E}\Big[\big(\tilde{\beta}_k-\tilde{\beta}\big)\big(\tilde{\beta}_k-\tilde{\beta}\big)^{\mathrm{t}}\Big]=S\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)^{\mathrm{t}}\Big]\Big)+\rho_{k-1}
$$

pushed forward by affine operator on matrices.

Intuition:

- Interaction between GD dynamics and on-line dropout encapsulated in
- **•** This structure remains hidden when considering averaged estimator β

Lemma

Up to exponentially decaying remainder $\rho_{\bm{k}}$, second moment of $\tilde{\beta}_k - \tilde{\beta}$ *evolves as affine dynamical system*

$$
\mathbb{E}\Big[\big(\tilde{\beta}_k-\tilde{\beta}\big)\big(\tilde{\beta}_k-\tilde{\beta}\big)^{\mathrm{t}}\Big]=S\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)^{\mathrm{t}}\Big]\Big)+\rho_{k-1}
$$

pushed forward by affine operator on matrices.

Exact Definition:

$$
S(A) = (I - \alpha p \mathbb{X}_p) A (I - \alpha p \mathbb{X}_p) + \alpha^2 p (1 - p) \text{Diag}(\mathbb{X}_p A \mathbb{X}_p)
$$

+ $\alpha^2 p^2 (1 - p)^2 \overline{\mathbb{X}} \odot (A + \mathbb{E}[\tilde{\beta} \tilde{\beta}^t]) \odot \overline{\mathbb{X}}$
+ $\alpha^2 p^2 (1 - p) (\overline{\mathbb{X}} \text{Diag} (A + \mathbb{E}[\tilde{\beta} \tilde{\beta}^t]) \overline{\mathbb{X}})_p$
+ $\alpha^2 p^2 (1 - p) (\overline{\mathbb{X}} \text{Diag}(\mathbb{X}_p A) + \text{Diag}(\mathbb{X}_p A) \overline{\mathbb{X}})$

Lemma

Up to exponentially decaying remainder $\rho_{\bm{k}}$, second moment of $\tilde{\beta}_k - \tilde{\beta}$ *evolves as affine dynamical system*

$$
\mathbb{E}\Big[\big(\tilde{\beta}_k-\tilde{\beta}\big)\big(\tilde{\beta}_k-\tilde{\beta}\big)^{\mathrm{t}}\Big]=S\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)\big(\tilde{\beta}_{k-1}-\tilde{\beta}\big)^{\mathrm{t}}\Big]\Big)+\rho_{k-1}
$$

pushed forward by affine operator on matrices.

Notes on Proof:

 \bullet S has complex expression due to dependence structure in

$$
\tilde{\beta}_k - \tilde{\beta} = (I - \alpha D_k \times D_k)(\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_k \overline{\times} (pI - D_k)\tilde{\beta}
$$

• Proof requires computing $4th$ order moments of the form $\mathbb{E}[D_kAD_kBD_kCD_k]$

Theorem

For sufficiently small $\alpha := \alpha(\mathbb{X}, p)$, $S_0 := S(0)$, and $S_{lin} := S - S_0$

$$
\left\| \mathbb{E} \left[\left(\tilde{\beta}_k - \tilde{\beta} \right) \left(\tilde{\beta}_k - \tilde{\beta} \right)^{\dagger} \right] - \left(\mathrm{id} - S_{\mathrm{lin}} \right)^{-1} S_0 \right\| = O\left(k \| I - \alpha p \mathbb{X}_p \|^{k-1} \right)
$$

Theorem

For sufficiently small $\alpha := \alpha(\mathbb{X}, p)$, $S_0 := S(0)$, and $S_{lin} := S - S_0$

$$
\left\|\mathbb{E}\Big[(\tilde{\beta}_k-\tilde{\beta})(\tilde{\beta}_k-\tilde{\beta})^{\mathsf{t}}\Big] - \left(\mathrm{id} - S_{\mathrm{lin}}\right)^{-1} S_0\right\| = O\Big(k\|I - \alpha p \mathbb{X}_p\|^{k-1}\Big)
$$

Notes:

- Limit characterized by intercept S_0 and linear part S_{lin} of S
- Small $\alpha \implies$ operator norm of S_{lin} less than 1

Theorem

For sufficiently small $\alpha := \alpha(\mathbb{X}, p)$, $S_0 := S(0)$, and $S_{\text{lin}} := S - S_0$

$$
\left\| \mathbb{E} \left[\left(\tilde{\beta}_k - \tilde{\beta} \right) \left(\tilde{\beta}_k - \tilde{\beta} \right)^{\mathrm{t}} \right] - \left(\mathrm{id} - S_{\mathrm{lin}} \right)^{-1} S_0 \right\| = O\left(k \| I - \alpha p \mathbb{X}_p \|^{k-1} \right)
$$

Corollary I:

$$
\bullet \ \text{Cov}(\tilde{\beta}_k) = \text{Cov}(\tilde{\beta}) + (\text{id} - S_{\text{lin}})^{-1} S_0 + O\big(k\|I - \alpha p \mathbb{X}_p\|^{k-1}\big)
$$

 $\left(\mathrm{id}-S_\mathrm{lin}\right)^{-1}\!S_0$ is the variance of the "centered orthogonal noise" from earlier proposition

Theorem

For sufficiently small $\alpha := \alpha(\mathbb{X}, p)$, $S_0 := S(0)$, and $S_{\text{lin}} := S - S_0$

$$
\left\| \mathbb{E} \left[\left(\tilde{\beta}_k - \tilde{\beta} \right) \left(\tilde{\beta}_k - \tilde{\beta} \right)^{\dagger} \right] - \left(\mathrm{id} - S_{\mathrm{lin}} \right)^{-1} S_0 \right\| = O\left(k \| I - \alpha p \mathbb{X}_p \|^{k-1} \right)
$$

Corollary I:

$$
\bullet \ \text{Cov}(\tilde{\beta}_k) = \text{Cov}(\tilde{\beta}) + (\text{id} - S_{\text{lin}})^{-1} S_0 + O\big(k\|I - \alpha p \mathbb{X}_p\|^{k-1}\big)
$$

Unfortunately, $\left(\mathrm{id}-S_{\mathrm{lin}}\right)^{-1}\!S_0\neq0$ in general, so $\tilde{\beta}_k$ does not attain the optimal variance!

Theorem

For sufficiently small $\alpha := \alpha(\mathbb{X}, p)$, $S_0 := S(0)$, and $S_{lin} := S - S_0$

$$
\left\| \mathbb{E} \left[\left(\tilde{\beta}_k - \tilde{\beta} \right) \left(\tilde{\beta}_k - \tilde{\beta} \right)^{\dagger} \right] - \left(\mathrm{id} - S_{\mathrm{lin}} \right)^{-1} S_0 \right\| = O\left(k \| I - \alpha p \mathbb{X}_p \|^{k-1} \right)
$$

Corollary I:

$$
\bullet \ \text{Cov}(\tilde{\beta}_k) = \text{Cov}(\tilde{\beta}) + (\text{id} - S_{\text{lin}})^{-1} S_0 + O\big(k\|I - \alpha p \mathbb{X}_p\|^{k-1}\big)
$$

Unfortunately, $\left(\mathrm{id}-S_{\mathrm{lin}}\right)^{-1}\!S_0\neq0$ in general, so $\tilde{\beta}_k$ does not attain the optimal variance!

Corollary II:

In general, $\tilde{\beta_k}$ does not converge to $\tilde{\beta}$ in L_2 since

$$
\mathrm{Tr}\left(\mathbb{E}\Big[(\tilde{\beta}_k-\tilde{\beta})(\tilde{\beta}_k-\tilde{\beta})^{\mathrm{t}}\Big]\right)=\mathbb{E}\Big[\|\tilde{\beta}_k-\tilde{\beta}\|_2^2\Big].
$$

Our techniques/results show:

Second-order analysis of gradient descent with dropout is already rather technical in the linear model.

Our techniques/results show:

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- **•** Elementary $-$ yet complicated $-$ linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.

Our techniques/results show:

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- **•** Elementary $-$ yet complicated $-$ linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.
- Second-order dynamics are only visible through direct study of on-line iterates.

Our techniques/results show:

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- **•** Elementary $-$ yet complicated $-$ linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.
- Second-order dynamics are only visible through direct study of on-line iterates.
- Often cited connection with ridge regression is more nuanced for the variance.

Extensions/Open Problems

- Neural networks?
- Connections with other forms of algorithmic regularization?
- Randomized design and iteration dependent learning rate?

For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." \emph{arXiv} *preprint: 2306.10529* (2023).

For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." \emph{arXiv} *preprint: 2306.10529* (2023).

Thanks for your attention!