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Dropout in Neural Networks

• Neural network with shifted activation 𝜎𝑣 = 𝜎( ⋅ −𝑣)

𝑓(𝑥) = 𝑊 (𝐿) ∘ 𝜎𝑣(𝐿) ∘ ⋯ ∘ 𝑊 (1) ∘ 𝜎𝑣(1) ∘ 𝑊
(0)(𝑥)
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Dropout in Neural Networks

• Neural network with shifted activation 𝜎𝑣 = 𝜎( ⋅ −𝑣)

𝑓(𝑥) = 𝑊 (𝐿) ∘ 𝜎𝑣(𝐿) ∘ ⋯ ∘ 𝑊 (1) ∘ 𝜎𝑣(1) ∘ 𝑊
(0)(𝑥)

• During each iteration of training, dropout replaces each
weight matrix𝑊 (ℓ) with a sample from

𝑊 (ℓ)𝐷(ℓ), 𝐷(ℓ)
𝑖𝑖

𝑖.𝑖.𝑑.
∼ Ber(𝑝)
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Dropout in Neural Networks

Figure 1: Regular neurons (left) and random sample of dropout
neurons (right).
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Why Study the Linear Model?

Canonical piece of wisdom: integrating over dropout noise in
linear regression leads to ridge regression/ℓ2-penalization!
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀, then

argmin
𝛽

𝔼𝐷[‖𝑌 − 𝑋𝐷𝛽‖22] = (𝑝𝑋 t𝑋 + (1 − 𝑝)Diag(𝑋 t𝑋))
−1
𝑋 t𝑌
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Why Study the Linear Model?

Proposition (Srivastava et al.1)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀, then

argmin
𝛽

𝔼𝐷[‖𝑌 − 𝑋𝐷𝛽‖22] = (𝑝𝑋 t𝑋 + (1 − 𝑝)Diag(𝑋 t𝑋))
−1
𝑋 t𝑌

1N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R, Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR.
2014.
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀, then

argmin
𝛽

𝔼𝐷[‖𝑌 − 𝑋𝐷𝛽‖22] = (𝑝𝑋 t𝑋 + (1 − 𝑝)Diag(𝑋 t𝑋))
−1
𝑋 t𝑌⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

≕𝛽
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀, then

argmin
𝛽

𝔼𝐷[‖𝑌 − 𝑋𝐷𝛽‖22] ≕ ̃𝛽

Intuition:

• Re-scaled minimizer performs weighted ridge regression:

𝑝 ̃𝛽 = argmin
𝛽

(‖𝑌 − 𝑋𝛽‖22 + ( 1
𝑝
− 1) ⋅ ‖‖√Diag(𝑋 t𝑋)𝛽‖‖

2

2
)

• Small 𝑝 ⟹ strong regularization
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀, then

argmin
𝛽

𝔼𝐷[‖𝑌 − 𝑋𝐷𝛽‖22] ≕ ̃𝛽

Problems:

• No explicit gradient descent
• No access to variance
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Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix 𝐷𝑖𝑖
𝑖.𝑖.𝑑.
∼ Ber(𝑝); linear model 𝑌 = 𝑋𝛽⋆ + 𝜀, then

argmin
𝛽

𝔼𝐷[‖𝑌 − 𝑋𝐷𝛽‖22] ≕ ̃𝛽

Problems:

• No explicit gradient descent
• No access to variance
• Conditional expectation 𝔼[ ⋅ ∣ 𝑌] represents loss of
information ⟹ ̃𝛽 may not fully capture gradient descent
dynamics with extra noise
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Some Definitions

• Important matrices:

𝕏 ∶= 𝑋 t𝑋

𝕏 ∶= 𝕏 − Diag(𝕏)

𝕏𝑝 ∶= 𝑝𝕏 + (1 − 𝑝)Diag(𝕏)
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Some Definitions

• Important matrices:

𝕏 ∶= 𝑋 t𝑋

𝕏 ∶= 𝕏 − Diag(𝕏)

𝕏𝑝 ∶= 𝑝𝕏 + (1 − 𝑝)Diag(𝕏)

(𝕏𝑝 invertible if min𝑖 𝕏𝑖𝑖 > 0)
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Some Definitions

• Important matrices:

𝕏 ∶= 𝑋 t𝑋

𝕏 ∶= 𝕏 − Diag(𝕏)

𝕏𝑝 ∶= 𝑝𝕏 + (1 − 𝑝)Diag(𝕏)

• Marginalized dropout estimator: ̃𝛽 = 𝕏−1𝑝 𝑋 t𝑌 (minimizer
from proposition)
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Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

𝛽𝑘+1 = 𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝛽𝑘‖‖

2

2
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Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

𝛽𝑘+1 = 𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝛽𝑘‖‖

2

2

On-Line Dropout:

̃𝛽𝑘+1 = ̃𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝐷𝑘+1 ̃𝛽𝑘‖‖

2

2

A new 𝑖.𝑖.𝑑. dropout matrix is sampled every iteration!
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Incorporating Dropout with Gradient Descent

On-Line Dropout:

̃𝛽𝑘+1 = ̃𝛽𝑘 −
𝛼
2∇𝛽𝑘

‖
‖𝑌 − 𝑋𝐷𝑘+1 ̃𝛽𝑘‖‖

2

2

A new 𝑖.𝑖.𝑑. dropout matrix is sampled every iteration!

Questions:

• Convergence towards ̃𝛽?
• Characterizing dynamics with noise?
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2

Intuition:

• Exponential decay, as in regular gradient descent
• Expected learning rate 𝛼𝑝
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2

Idea of proof:

• Rewrite

̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2

Idea of proof:

• Rewrite
̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽

• Compute

𝔼[𝐷𝑘𝕏𝐷𝑘] = 𝑝𝕏𝑝
𝔼[𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘)] = 0
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Convergence of Expectation

Proposition
If 𝛼𝑝‖𝕏‖ < 1 and min𝑖 𝕏𝑖𝑖 > 0, then

‖
‖𝔼[ ̃𝛽𝑘 − ̃𝛽]‖‖2

≤ ‖
‖𝐼 − 𝛼𝑝𝕏𝑝‖‖

𝑘
⋅ ‖‖𝔼[ ̃𝛽0 − ̃𝛽]‖‖2

Idea of proof:

• Rewrite
̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽

• Compute

𝔼[𝐷𝑘𝕏𝐷𝑘] = 𝑝𝕏𝑝
𝔼[𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘)] = 0

• Now 𝔼[ ̃𝛽𝑘 − ̃𝛽] = (𝐼 − 𝛼𝑝𝕏𝑝)𝔼[ ̃𝛽𝑘−1 − ̃𝛽]; induction finishes! 6
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Second Moment Dynamics I

Theorem (Informal Statement)
Affine estimator ̃𝛽aff ∶= 𝐵𝑌 + 𝑎 (𝐵 and 𝑎 independent of 𝑌) and
linear estimator ̃𝛽𝐴 ∶= 𝐴𝑋 t𝑌 (𝐴 deterministic), then

𝔼[ ̃𝛽aff] ≈ 𝔼[ ̃𝛽𝐴] ⟹ Cov( ̃𝛽aff − ̃𝛽𝐴, ̃𝛽𝐴) ≈ 0
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Second Moment Dynamics I

Theorem (Informal Statement)
Affine estimator ̃𝛽aff ∶= 𝐵𝑌 + 𝑎 (𝐵 and 𝑎 independent of 𝑌) and
linear estimator ̃𝛽𝐴 ∶= 𝐴𝑋 t𝑌 (𝐴 deterministic), then

𝔼[ ̃𝛽aff] ≈ 𝔼[ ̃𝛽𝐴] ⟹ Cov( ̃𝛽aff − ̃𝛽𝐴, ̃𝛽𝐴) ≈ 0

Intuition:

• If ̃𝛽aff (nearly) unbiased for ̃𝛽𝐴,

̃𝛽aff ≈ ̃𝛽𝐴 + centered orthogonal noise
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Second Moment Dynamics I

Theorem (Informal Statement)
Affine estimator ̃𝛽aff ∶= 𝐵𝑌 + 𝑎 (𝐵 and 𝑎 independent of 𝑌) and
linear estimator ̃𝛽𝐴 ∶= 𝐴𝑋 t𝑌 (𝐴 deterministic), then

𝔼[ ̃𝛽aff] ≈ 𝔼[ ̃𝛽𝐴] ⟹ Cov( ̃𝛽aff − ̃𝛽𝐴, ̃𝛽𝐴) ≈ 0

Intuition:

• If ̃𝛽aff (nearly) unbiased for ̃𝛽𝐴,

̃𝛽aff ≈ ̃𝛽𝐴 + centered orthogonal noise

• If 𝐵𝑘𝑌 + 𝑎𝑘 asymptotically unbiased for ̃𝛽𝐴,

lim inf
𝑘→∞

Cov(𝐵𝑘𝑌 + 𝑎𝑘) ≥ Cov( ̃𝛽𝐴)
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Second Moment Dynamics I

Theorem (Informal Statement)
Affine estimator ̃𝛽aff ∶= 𝐵𝑌 + 𝑎 (𝐵 and 𝑎 independent of 𝑌) and
linear estimator ̃𝛽𝐴 ∶= 𝐴𝑋 t𝑌 (𝐴 deterministic), then

𝔼[ ̃𝛽aff] ≈ 𝔼[ ̃𝛽𝐴] ⟹ Cov( ̃𝛽aff − ̃𝛽𝐴, ̃𝛽𝐴) ≈ 0

Dropout-specific:

• Dropout iterates ̃𝛽𝑘 are affine estimators asymptotically
unbiased for ̃𝛽

• Cov( ̃𝛽) represents fundamental lower bound
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Second Moment Dynamics II

Lemma
Second moment of ̃𝛽𝑘 − ̃𝛽 evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine map 𝑆 with decaying remainder 𝜌𝑘.
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Second Moment Dynamics II

Lemma
Second moment of ̃𝛽𝑘 − ̃𝛽 evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine map 𝑆 with decaying remainder 𝜌𝑘.

Intuition:

• Interaction between GD dynamics and on-line dropout
encapsulated in 𝑆

• This structure remains hidden when considering averaged
estimator ̃𝛽
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Second Moment Dynamics II

Lemma
Second moment of ̃𝛽𝑘 − ̃𝛽 evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine map 𝑆 with decaying remainder 𝜌𝑘.

Exact Definition:

𝑆(𝐴) = (𝐼 − 𝛼𝑝𝕏𝑝)𝐴(𝐼 − 𝛼𝑝𝕏𝑝) + 𝛼2𝑝(1 − 𝑝)Diag(𝕏𝑝𝐴𝕏𝑝)

+ 𝛼2𝑝2(1 − 𝑝)2𝕏⊙ (𝐴 + 𝔼[ ̃𝛽 ̃𝛽t]) ⊙ 𝕏

+ 𝛼2𝑝2(1 − 𝑝)(𝕏Diag(𝐴 + 𝔼[ ̃𝛽 ̃𝛽t])𝕏)
𝑝

+ 𝛼2𝑝2(1 − 𝑝)(𝕏Diag(𝕏𝑝𝐴) + Diag(𝕏𝑝𝐴)𝕏)
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Second Moment Dynamics II

Lemma
Second moment of ̃𝛽𝑘 − ̃𝛽 evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine map 𝑆 with decaying remainder 𝜌𝑘.

Notes on Proof:

• Complicated expression due to dependence structure in

̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽
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Second Moment Dynamics II

Lemma
Second moment of ̃𝛽𝑘 − ̃𝛽 evolves as affine dynamical system

𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] = 𝑆(𝔼[( ̃𝛽𝑘−1 − ̃𝛽)( ̃𝛽𝑘−1 − ̃𝛽)t]) + 𝜌𝑘−1

pushed forward by affine map 𝑆 with decaying remainder 𝜌𝑘.

Notes on Proof:

• Complicated expression due to dependence structure in

̃𝛽𝑘 − ̃𝛽 = (𝐼 − 𝛼𝐷𝑘𝕏𝐷𝑘)( ̃𝛽𝑘−1 − ̃𝛽) + 𝛼𝐷𝑘𝕏(𝑝𝐼 − 𝐷𝑘) ̃𝛽

• Requires computing 4th order moments 𝔼[𝐷𝑘𝐴𝐷𝑘𝐵𝐷𝑘𝐶𝐷𝑘]
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Second Moment Dynamics III

Theorem
For sufficiently small 𝛼 ≕ 𝛼(𝕏, 𝑝), 𝑆0 ≕ 𝑆(0), and 𝑆lin ≕ 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)
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Second Moment Dynamics III

Theorem
For sufficiently small 𝛼 ≕ 𝛼(𝕏, 𝑝), 𝑆0 ≕ 𝑆(0), and 𝑆lin ≕ 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Notes:

• Limit characterized by intercept 𝑆0 and linear part 𝑆lin of 𝑆
• Small 𝛼 ⟹ operator norm of 𝑆lin less than 1
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Second Moment Dynamics III

Theorem
For sufficiently small 𝛼 ≕ 𝛼(𝕏, 𝑝), 𝑆0 ≕ 𝑆(0), and 𝑆lin ≕ 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Corollary I:

• Cov( ̃𝛽𝑘) = Cov( ̃𝛽) + (id − 𝑆lin)
−1𝑆0 + 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

• (id − 𝑆lin)
−1𝑆0 is the variance of the “centered orthogonal

noise” from earlier proposition
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Second Moment Dynamics III

Theorem
For sufficiently small 𝛼 ≕ 𝛼(𝕏, 𝑝), 𝑆0 ≕ 𝑆(0), and 𝑆lin ≕ 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Corollary I:

• Cov( ̃𝛽𝑘) = Cov( ̃𝛽) + (id − 𝑆lin)
−1𝑆0 + 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

• (id − 𝑆lin)
−1𝑆0 is the variance of the “centered orthogonal

noise” from earlier proposition
• Unfortunately, (id − 𝑆lin)

−1𝑆0 ≠ 0 in general, so ̃𝛽𝑘 does not
attain the optimal variance!
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Second Moment Dynamics III

Theorem
For sufficiently small 𝛼 ≕ 𝛼(𝕏, 𝑝), 𝑆0 ≕ 𝑆(0), and 𝑆lin ≕ 𝑆 − 𝑆0

‖
‖‖𝔼[(

̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t] − (id − 𝑆lin)
−1𝑆0

‖
‖‖ = 𝑂(𝑘‖𝐼 − 𝛼𝑝𝕏𝑝‖𝑘−1)

Corollary II:

• In general, ̃𝛽𝑘 does not converge to ̃𝛽 in 𝐿2 since

𝔼[‖ ̃𝛽𝑘 − ̃𝛽‖22] = Tr(𝔼[( ̃𝛽𝑘 − ̃𝛽)( ̃𝛽𝑘 − ̃𝛽)t])

→ Tr((id − 𝑆lin)
−1𝑆0).

9



Conclusion

Our techniques/results show:

• Second-order analysis of gradient descent with dropout is
already rather technical in the linear model.
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Conclusion

Our techniques/results show:

• Second-order analysis of gradient descent with dropout is
already rather technical in the linear model.

• Elementary — yet complicated — linear algebra is
necessary at first to compute the basic objects, then a
more abstract perspective can be applied.

• Second-order dynamics are only visible through direct
study of on-line iterates.

• Often cited connection with ridge regression is more
nuanced for the variance.
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Extensions/Open Problems

• Neural networks?
• Connections with other forms of algorithmic
regularization?

• Randomized design and iteration dependent learning rate?

11



For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. “Dropout
Regularization Versus ℓ2-Penalization in the Linear Model.”
arXiv preprint: 2306.10529 (2023).
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Thanks for your attention!



Sub-Optimality of Variance

Theorem
Suppose sup𝑚≠ℓ|𝕏ℓ𝑚| ≠ 0 for every ℓ = 1,… , 𝑑, then

lim
𝑘→∞

Cov( ̃𝛽𝑘) − Cov( ̃𝛽) ≥ 𝑂(𝜆min(𝕏) min
𝑖≠𝑗∶𝕏𝑖𝑗≠0

𝕏2𝑖𝑗) ⋅ 𝐼𝑑

whenever the limit exists.
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Notes:

• Non-trivial bound provided 𝜆min(𝕏) > 0.



Sub-Optimality of Variance

Theorem
Suppose sup𝑚≠ℓ|𝕏ℓ𝑚| ≠ 0 for every ℓ = 1,… , 𝑑, then

lim
𝑘→∞

Cov( ̃𝛽𝑘) − Cov( ̃𝛽) ≥ 𝑂(𝜆min(𝕏) min
𝑖≠𝑗∶𝕏𝑖𝑗≠0

𝕏2𝑖𝑗) ⋅ 𝐼𝑑

whenever the limit exists.

Notes:

• Non-trivial bound provided 𝜆min(𝕏) > 0.
• Frobenius norm of right-hand side scales with dimension 𝑑.



Ruppert-Polyak Averaging

Theorem

Running average ̃𝛽rp𝑘 ∶= 1
𝑘
∑𝑘

ℓ=1
̃𝛽ℓ; for sufficiently small 𝛼

‖
‖‖𝔼[(

̃𝛽rp𝑘 − ̃𝛽)( ̃𝛽rp𝑘 − ̃𝛽)t]‖‖‖ = 𝑂(𝑘−1)



Ruppert-Polyak Averaging

Theorem

Running average ̃𝛽rp𝑘 ∶= 1
𝑘
∑𝑘

ℓ=1
̃𝛽ℓ; for sufficiently small 𝛼

‖
‖‖𝔼[(

̃𝛽rp𝑘 − ̃𝛽)( ̃𝛽rp𝑘 − ̃𝛽)t]‖‖‖ = 𝑂(𝑘−1)

Intuition:

• “Centered orthogonal noise” averaged away; at the price of
slower convergence

• ̃𝛽rp𝑘 converges to ̃𝛽 in 𝐿2
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