Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model

Gabriel Clara Sophie Langer Johannes Schmidt-Hieber June 13, 2024

Department of Applied Mathematics, Universiteit Twente

Joint work with Sophie Langer and Johannes Schmidt-Hieber

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." *arXiv preprint: 2306.10529* (2023).

Dropout in Neural Networks

Linear Regression as a Toy Model

Gradient Descent with Dropout

Second Moment Dynamics

• Neural network with shifted activation $\sigma_v = \sigma(\cdot - v)$

$$f(x) = W^{(L)} \circ \sigma_{U^{(L)}} \circ \cdots \circ W^{(1)} \circ \sigma_{U^{(1)}} \circ W^{(0)}(x)$$

• Neural network with shifted activation $\sigma_v = \sigma(\cdot -v)$

$$f(x) = W^{(L)} \circ \sigma_{v^{(L)}} \circ \cdots \circ W^{(1)} \circ \sigma_{v^{(1)}} \circ W^{(0)}(x)$$

• During each iteration of training, dropout replaces each weight matrix $W^{(\ell)}$ with a sample from

$$W^{(\ell)} \mathbf{D}^{(\ell)}, \qquad D_{ii}^{(\ell)} \stackrel{i.i.d.}{\sim} \operatorname{Ber}(p)$$

Dropout in Neural Networks

Figure 1: Regular neurons (left) and random sample of dropout neurons (right).

Dropout in Neural Networks

Linear Regression as a Toy Model

Gradient Descent with Dropout

Second Moment Dynamics

Canonical piece of wisdom: integrating over dropout noise in linear regression leads to ridge regression/ ℓ_2 -penalization!

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} Ber(p)$; linear model $Y = X\beta_{\star} + \varepsilon$, then

$$\arg\min_{\beta} \mathbb{E}_{\mathbf{D}} \Big[\|Y - X\mathbf{D}\beta\|_{2}^{2} \Big] = \Big(pX^{\mathsf{t}}X + (1-p)\mathrm{Diag}(X^{\mathsf{t}}X) \Big)^{-1}X^{\mathsf{t}}Y$$

Proposition (Srivastava et al.¹) Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} \text{Ber}(p)$; linear model $Y = X\beta_{\star} + \varepsilon$, then $\arg\min_{\beta} \mathbb{E}_{D} \Big[\|Y - XD\beta\|_{2}^{2} \Big] = \Big(pX^{t}X + (1-p)\text{Diag}(X^{t}X) \Big)^{-1}X^{t}Y$

¹N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R, Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR. 2014.

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} Ber(p)$; linear model $Y = X\beta_{\star} + \varepsilon$, then

$$\underset{\beta}{\arg\min} \mathbb{E}_{D} \Big[\|Y - XD\beta\|_{2}^{2} \Big] = \underbrace{\left(pX^{\mathsf{t}}X + (1-p)\mathrm{Diag}(X^{\mathsf{t}}X) \right)^{-1} X^{\mathsf{t}}Y}_{=:\widetilde{\beta}}$$

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} Ber(p)$; linear model $Y = X\beta_{\star} + \varepsilon$, then

$$\underset{\beta}{\arg\min} \mathbb{E}_{D} \Big[\|Y - XD\beta\|_{2}^{2} \Big] \eqqcolon \tilde{\beta}$$

Intuition:

• Re-scaled minimizer performs weighted ridge regression:

$$p\tilde{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \left(\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \left(\frac{1}{p} - 1\right) \cdot \left\| \sqrt{\operatorname{Diag}(\boldsymbol{X}^{\mathsf{t}}\boldsymbol{X})}\boldsymbol{\beta} \right\|_{2}^{2} \right)$$

• Small $p \implies$ strong regularization

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} \operatorname{Ber}(p)$; linear model $Y = X\beta_{\star} + \varepsilon$, then $\operatorname{arg\,min}_{\beta} \mathbb{E}_{D} \Big[\|Y - XD\beta\|_{2}^{2} \Big] =: \tilde{\beta}$

Problems:

- No explicit gradient descent
- No access to variance

Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix $D_{ii} \stackrel{i.i.d.}{\sim} Ber(p)$; linear model $Y = X\beta_{\star} + \varepsilon$, then

$$\mathop{\arg\min}_{\beta} \mathbb{E}_D \Big[\|Y - XD\beta\|_2^2 \Big] \eqqcolon \tilde{\beta}$$

Problems:

- No explicit gradient descent
- No access to variance
- Conditional expectation $\mathbb{E}[\cdot | Y]$ represents loss of information $\implies \tilde{\beta}$ may not fully capture gradient descent dynamics with extra noise

Dropout in Neural Networks

Linear Regression as a Toy Model

Gradient Descent with Dropout

Second Moment Dynamics

• Important matrices:

$$\begin{split} & \chi := X^{t}X \\ & \overline{\chi} := \chi - \text{Diag}(\chi) \\ & \chi_{p} := p\chi + (1-p)\text{Diag}(\chi) \end{split}$$

• Important matrices:

$$X := X^{t}X$$
$$\overline{X} := X - \text{Diag}(X)$$
$$X_{p} := pX + (1 - p)\text{Diag}(X)$$

(X_p invertible if $\min_i X_{ii} > 0$)

• Important matrices:

$$\begin{array}{l} \mathbb{X} := X^{\mathsf{t}}X \\ \overline{\mathbb{X}} := \mathbb{X} - \mathrm{Diag}(\mathbb{X}) \\ \mathbb{X}_p := p\mathbb{X} + (1-p)\mathrm{Diag}(\mathbb{X}) \end{array}$$

• Marginalized dropout estimator: $\tilde{\beta} = X_p^{-1} X^t Y$ (minimizer from proposition)

Standard Gradient Descent:

$$\beta_{k+1} = \beta_k - \frac{\alpha}{2} \nabla_{\beta_k} \left\| Y - X \beta_k \right\|_2^2$$

Standard Gradient Descent:

$$\beta_{k+1} = \beta_k - \frac{\alpha}{2} \nabla_{\beta_k} \left\| Y - X \beta_k \right\|_2^2$$

On-Line Dropout:

$$\tilde{\beta}_{k+1} = \tilde{\beta}_k - \frac{\alpha}{2} \nabla_{\tilde{\beta}_k} \left\| Y - X D_{k+1} \tilde{\beta}_k \right\|_2^2$$

A new *i.i.d.* dropout matrix is sampled every iteration!

On-Line Dropout:

$$\tilde{\beta}_{k+1} = \tilde{\beta}_k - \frac{\alpha}{2} \nabla_{\tilde{\beta}_k} \left\| Y - X D_{k+1} \tilde{\beta}_k \right\|_2^2$$

A new *i.i.d.* dropout matrix is sampled every iteration!

Questions:

- Convergence towards $\tilde{\beta}$?
- Characterizing dynamics with noise?

Proposition

If $\alpha p \|X\| < 1$ and $\min_i X_{ii} > 0$, then

$$\left\| \mathbb{E}[\tilde{\beta}_{k} - \tilde{\beta}] \right\|_{2} \leq \left\| I - \alpha p \mathbb{X}_{p} \right\|^{k} \cdot \left\| \mathbb{E}[\tilde{\beta}_{0} - \tilde{\beta}] \right\|_{2}$$

Proposition

If $\alpha p \|X\| < 1$ and $\min_i X_{ii} > 0$, then

$$\left\|\mathbb{E}[\tilde{\beta}_{k} - \tilde{\beta}]\right\|_{2} \leq \left\|I - \alpha p \mathbb{X}_{p}\right\|^{k} \cdot \left\|\mathbb{E}[\tilde{\beta}_{0} - \tilde{\beta}]\right\|_{2}$$

Intuition:

- Exponential decay, as in regular gradient descent
- Expected learning rate αp

Proposition

If $\alpha p \|X\| < 1$ and $\min_i X_{ii} > 0$, then

$$\left\|\mathbb{E}[\tilde{\beta}_{k} - \tilde{\beta}]\right\|_{2} \leq \left\|I - \alpha p \mathbb{X}_{p}\right\|^{k} \cdot \left\|\mathbb{E}[\tilde{\beta}_{0} - \tilde{\beta}]\right\|_{2}$$

Idea of proof:

• Rewrite

$$\tilde{\beta}_{k} - \tilde{\beta} = (I - \alpha D_{k} \rtimes D_{k}) (\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_{k} \overline{\rtimes} (pI - D_{k}) \tilde{\beta}$$

Convergence of Expectation

Proposition

If $\alpha p \|X\| < 1$ and $\min_i X_{ii} > 0$, then

$$\left\|\mathbb{E}[\tilde{\beta}_{k} - \tilde{\beta}]\right\|_{2} \leq \left\|I - \alpha p \mathbb{X}_{p}\right\|^{k} \cdot \left\|\mathbb{E}[\tilde{\beta}_{0} - \tilde{\beta}]\right\|_{2}$$

Idea of proof:

• Rewrite

$$\tilde{\beta}_k - \tilde{\beta} = (I - \alpha D_k \times D_k) (\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_k \times (pI - D_k) \tilde{\beta}$$

• Compute

 $\mathbb{E}[D_k \rtimes D_k] = p \rtimes_p$ $\mathbb{E}[D_k \overline{\rtimes}(pI - D_k)] = 0$

Convergence of Expectation

Proposition

If $\alpha p \|X\| < 1$ and $\min_i X_{ii} > 0$, then

$$\left\|\mathbb{E}[\tilde{\beta}_{k} - \tilde{\beta}]\right\|_{2} \leq \left\|I - \alpha p \mathbb{X}_{p}\right\|^{k} \cdot \left\|\mathbb{E}[\tilde{\beta}_{0} - \tilde{\beta}]\right\|_{2}$$

Idea of proof:

Rewrite

$$\tilde{\beta}_k - \tilde{\beta} = (I - \alpha D_k \rtimes D_k) (\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_k \overline{\rtimes} (pI - D_k) \tilde{\beta}$$

• Compute

 $\mathbb{E}[D_k \rtimes D_k] = p \rtimes_p$ $\mathbb{E}[D_k \overline{\rtimes}(pI - D_k)] = 0$ • Now $\mathbb{E}[\tilde{\beta}_k - \tilde{\beta}] = (I - \alpha p \rtimes_p) \mathbb{E}[\tilde{\beta}_{k-1} - \tilde{\beta}]$; induction finishes! 6

Dropout in Neural Networks

Linear Regression as a Toy Model

Gradient Descent with Dropout

Second Moment Dynamics

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{aff} := BY + a$ (B and a independent of Y) and linear estimator $\tilde{\beta}_A := AX^tY$ (A deterministic), then

$$\mathbb{E}[\tilde{\beta}_{\rm aff}] \approx \mathbb{E}[\tilde{\beta}_A] \implies \operatorname{Cov}(\tilde{\beta}_{\rm aff} - \tilde{\beta}_A, \tilde{\beta}_A) \approx 0$$

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{aff} := BY + a$ (B and a independent of Y) and linear estimator $\tilde{\beta}_A := AX^tY$ (A deterministic), then

$$\mathbb{E}\big[\tilde{\beta}_{\mathrm{aff}}\big] \approx \mathbb{E}\big[\tilde{\beta}_{A}\big] \implies \operatorname{Cov}\big(\tilde{\beta}_{\mathrm{aff}} - \tilde{\beta}_{A}, \tilde{\beta}_{A}\big) \approx 0$$

Intuition:

• If $ilde{eta}_{
m aff}$ (nearly) unbiased for $ilde{eta}_A$,

 $ilde{eta}_{
m aff} pprox ilde{eta}_A$ + centered orthogonal noise

Second Moment Dynamics I

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{aff} := BY + a$ (B and a independent of Y) and linear estimator $\tilde{\beta}_A := AX^tY$ (A deterministic), then

$$\mathbb{E}[\tilde{\beta}_{\text{aff}}] \approx \mathbb{E}[\tilde{\beta}_A] \implies \text{Cov}(\tilde{\beta}_{\text{aff}} - \tilde{\beta}_A, \tilde{\beta}_A) \approx 0$$

Intuition:

- If $ilde{eta}_{
m aff}$ (nearly) unbiased for $ilde{eta}_A$,

 $ilde{eta}_{
m aff} pprox ilde{eta}_A$ + centered orthogonal noise

• If $B_k Y + a_k$ asymptotically unbiased for $\tilde{\beta}_A$,

$$\liminf_{k \to \infty} \operatorname{Cov}(B_k Y + a_k) \ge \operatorname{Cov}(\tilde{\beta}_A)$$

Theorem (Informal Statement)

Affine estimator $\tilde{\beta}_{aff} := BY + a$ (B and a independent of Y) and linear estimator $\tilde{\beta}_A := AX^tY$ (A deterministic), then

$$\mathbb{E}[\tilde{\beta}_{\mathrm{aff}}] \approx \mathbb{E}[\tilde{\beta}_{A}] \implies \operatorname{Cov}(\tilde{\beta}_{\mathrm{aff}} - \tilde{\beta}_{A}, \tilde{\beta}_{A}) \approx 0$$

Dropout-specific:

- Dropout iterates $\tilde{\beta_k}$ are affine estimators asymptotically unbiased for $\tilde{\beta}$
- + $\operatorname{Cov}(ilde{eta})$ represents fundamental lower bound

Lemma

Second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^{\mathsf{t}}\Big] = S\!\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^{\mathsf{t}}\Big]\Big) + \rho_{k-1}$$

pushed forward by affine map S with decaying remainder ρ_k .

Second Moment Dynamics II

Lemma

Second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^{\mathrm{t}}\Big] = S\!\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^{\mathrm{t}}\Big]\Big) + \rho_{k-1}$$

pushed forward by affine map S with decaying remainder ρ_k .

Intuition:

- Interaction between GD dynamics and on-line dropout encapsulated in *S*
- This structure remains hidden when considering averaged estimator $\tilde{\beta}$

Second Moment Dynamics II

Lemma

Second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^{\mathsf{t}}\Big] = S\!\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^{\mathsf{t}}\Big]\Big) + \rho_{k-1}$$

pushed forward by affine map S with decaying remainder ρ_k .

Exact Definition:

$$\begin{split} S(A) &= \left(I - \alpha p \mathbb{X}_p\right) A \left(I - \alpha p \mathbb{X}_p\right) + \alpha^2 p (1 - p) \mathrm{Diag}(\mathbb{X}_p A \mathbb{X}_p) \\ &+ \alpha^2 p^2 (1 - p)^2 \overline{\mathbb{X}} \odot \left(A + \mathbb{E}[\tilde{\beta} \tilde{\beta}^{\mathrm{t}}]\right) \odot \overline{\mathbb{X}} \\ &+ \alpha^2 p^2 (1 - p) \left(\overline{\mathbb{X}} \mathrm{Diag}\left(A + \mathbb{E}[\tilde{\beta} \tilde{\beta}^{\mathrm{t}}]\right) \overline{\mathbb{X}}\right)_p \\ &+ \alpha^2 p^2 (1 - p) \left(\overline{\mathbb{X}} \mathrm{Diag}(\mathbb{X}_p A) + \mathrm{Diag}(\mathbb{X}_p A) \overline{\mathbb{X}}\right) \end{split}$$

Lemma

Second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^{\mathsf{t}}\Big] = S\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^{\mathsf{t}}\Big]\Big) + \rho_{k-1}$$

pushed forward by affine map S with decaying remainder ρ_k .

Notes on Proof:

· Complicated expression due to dependence structure in

$$\tilde{\beta}_{k} - \tilde{\beta} = (I - \alpha D_{k} \times D_{k})(\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_{k} \overline{\times} (pI - D_{k})\tilde{\beta}$$

Second Moment Dynamics II

Lemma

Second moment of $\tilde{\beta}_k - \tilde{\beta}$ evolves as affine dynamical system

$$\mathbb{E}\Big[\big(\tilde{\beta}_k - \tilde{\beta}\big)\big(\tilde{\beta}_k - \tilde{\beta}\big)^{\mathrm{t}}\Big] = S\!\Big(\mathbb{E}\Big[\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)\big(\tilde{\beta}_{k-1} - \tilde{\beta}\big)^{\mathrm{t}}\Big]\Big) + \rho_{k-1}$$

pushed forward by affine map S with decaying remainder ρ_k .

Notes on Proof:

· Complicated expression due to dependence structure in

$$\tilde{\beta}_k - \tilde{\beta} = (I - \alpha D_k \rtimes D_k) (\tilde{\beta}_{k-1} - \tilde{\beta}) + \alpha D_k \overline{\rtimes} (pI - D_k) \tilde{\beta}$$

• Requires computing 4th order moments $\mathbb{E}[D_kAD_kBD_kCD_k]$

For sufficiently small $\alpha =: \alpha(X, p)$, $S_0 =: S(0)$, and $S_{\text{lin}} =: S - S_0$

$$\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathsf{t}}\right]-\left(\mathrm{id}-\boldsymbol{S}_{\mathrm{lin}}\right)^{-1}\boldsymbol{S}_{\mathbf{0}}\right\|=O\left(k\|I-\alpha p\mathbb{X}_{p}\|^{k-1}\right)$$

For sufficiently small $\alpha =: \alpha(X, p)$, $S_0 =: S(0)$, and $S_{\text{lin}} =: S - S_0$

$$\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathsf{t}}\right]-\left(\mathrm{id}-\boldsymbol{S}_{\mathsf{lin}}\right)^{-1}\boldsymbol{S}_{\mathsf{0}}\right\|=O\left(k\|I-\alpha p\mathbb{X}_{p}\|^{k-1}\right)$$

Notes:

- Limit characterized by intercept S_0 and linear part S_{lin} of S
- Small $\alpha \implies$ operator norm of S_{lin} less than 1

Second Moment Dynamics III

Theorem

For sufficiently small $\alpha =: \alpha(X, p)$, $S_0 =: S(0)$, and $S_{\text{lin}} =: S - S_0$

$$\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathsf{t}}\right]-\left(\mathrm{id}-\boldsymbol{S}_{\mathrm{lin}}\right)^{-1}\boldsymbol{S}_{\boldsymbol{0}}\right\|=O\left(k\|I-\alpha p\mathbb{X}_{p}\|^{k-1}\right)$$

Corollary I:

- $\operatorname{Cov}(\tilde{\beta}_k) = \operatorname{Cov}(\tilde{\beta}) + (\operatorname{id} S_{\operatorname{lin}})^{-1} S_0 + O(k \|I \alpha p \mathbb{X}_p\|^{k-1})$
- $(id S_{lin})^{-1}S_0$ is the variance of the "centered orthogonal noise" from earlier proposition

Second Moment Dynamics III

Theorem

For sufficiently small $\alpha =: \alpha(X, p)$, $S_0 =: S(0)$, and $S_{\text{lin}} =: S - S_0$

$$\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathsf{t}}\right]-\left(\mathsf{id}-\boldsymbol{S}_{\mathsf{lin}}\right)^{-1}\boldsymbol{S}_{\mathsf{0}}\right\|=O\left(k\|I-\alpha p\mathbb{X}_{p}\|^{k-1}\right)$$

Corollary I:

- $\operatorname{Cov}(\tilde{\beta}_k) = \operatorname{Cov}(\tilde{\beta}) + (\operatorname{id} S_{\operatorname{lin}})^{-1} S_0 + O(k \|I \alpha p \mathbb{X}_p\|^{k-1})$
- $(id S_{lin})^{-1}S_0$ is the variance of the "centered orthogonal noise" from earlier proposition
- Unfortunately, $(id S_{lin})^{-1}S_0 \neq 0$ in general, so $\tilde{\beta}_k$ does not attain the optimal variance!

Second Moment Dynamics III

Theorem

For sufficiently small $\alpha =: \alpha(X, p)$, $S_0 =: S(0)$, and $S_{\text{lin}} =: S - S_0$

$$\left\|\mathbb{E}\left[\left(\tilde{\beta}_{k}-\tilde{\beta}\right)\left(\tilde{\beta}_{k}-\tilde{\beta}\right)^{\mathsf{t}}\right]-\left(\mathsf{id}-\boldsymbol{S}_{\mathsf{lin}}\right)^{-1}\boldsymbol{S}_{\mathsf{0}}\right\|=O\left(k\|I-\alpha p\mathbb{X}_{p}\|^{k-1}\right)$$

Corollary II:

• In general, $\tilde{\beta}_k$ does not converge to $\tilde{\beta}$ in L_2 since

$$\mathbb{E}\Big[\|\tilde{\beta}_{k} - \tilde{\beta}\|_{2}^{2}\Big] = \operatorname{Tr}\Big(\mathbb{E}\Big[(\tilde{\beta}_{k} - \tilde{\beta})(\tilde{\beta}_{k} - \tilde{\beta})^{\mathsf{t}}\Big]\Big)$$
$$\to \operatorname{Tr}\Big((\operatorname{id} - S_{\operatorname{lin}})^{-1}S_{0}\Big).$$

• Second-order analysis of gradient descent with dropout is already rather technical in the linear model.

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- Elementary yet complicated linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- Elementary yet complicated linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.
- Second-order dynamics are only visible through direct study of on-line iterates.

- Second-order analysis of gradient descent with dropout is already rather technical in the linear model.
- Elementary yet complicated linear algebra is necessary at first to compute the basic objects, then a more abstract perspective can be applied.
- Second-order dynamics are only visible through direct study of on-line iterates.
- Often cited connection with ridge regression is more nuanced for the variance.

- Neural networks?
- Connections with other forms of algorithmic regularization?
- Randomized design and iteration dependent learning rate?

For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." *arXiv preprint: 2306.10529* (2023).

For more details:

G.C., Sophie Langer, and Johannes Schmidt-Hieber. "Dropout Regularization Versus ℓ_2 -Penalization in the Linear Model." *arXiv preprint: 2306.10529* (2023).

Thanks for your attention!

Suppose $\sup_{m \neq \ell} |X_{\ell m}| \neq 0$ for every $\ell = 1, ..., d$, then

$$\lim_{k \to \infty} \operatorname{Cov}(\tilde{\beta}_k) - \operatorname{Cov}(\tilde{\beta}) \ge O\left(\lambda_{\min}(\mathbb{X}) \min_{i \neq j : \mathbb{X}_{ij} \neq 0} \mathbb{X}_{ij}^2\right) \cdot I_d$$

whenever the limit exists.

Suppose $\sup_{m \neq \ell} |X_{\ell m}| \neq 0$ for every $\ell = 1, ..., d$, then

$$\lim_{k \to \infty} \operatorname{Cov}(\tilde{\beta}_k) - \operatorname{Cov}(\tilde{\beta}) \ge O\left(\lambda_{\min}(X) \min_{i \neq j : X_{ij} \neq 0} X_{ij}^2\right) \cdot I_d$$

whenever the limit exists.

Notes:

• Non-trivial bound provided $\lambda_{\min}(X) > 0$.

Suppose $\sup_{m \neq \ell} |X_{\ell m}| \neq 0$ for every $\ell = 1, ..., d$, then

$$\lim_{k \to \infty} \operatorname{Cov}(\tilde{\beta}_k) - \operatorname{Cov}(\tilde{\beta}) \ge O\left(\lambda_{\min}(\mathbb{X}) \min_{i \neq j : \mathbb{X}_{ij} \neq 0} \mathbb{X}_{ij}^2\right) \cdot I_d$$

whenever the limit exists.

Notes:

- Non-trivial bound provided $\lambda_{\min}(X) > 0$.
- Frobenius norm of right-hand side scales with dimension d.

Running average $\tilde{\beta}_k^{\text{rp}} := \frac{1}{k} \sum_{\ell=1}^k \tilde{\beta}_\ell$; for sufficiently small α $\left\| \mathbb{E} \Big[(\tilde{\beta}_k^{\text{rp}} - \tilde{\beta}) (\tilde{\beta}_k^{\text{rp}} - \tilde{\beta})^{\text{t}} \Big] \right\| = O(k^{-1})$

Running average $\tilde{\beta}_k^{\text{rp}} := \frac{1}{k} \sum_{\ell=1}^k \tilde{\beta}_\ell$; for sufficiently small α $\left\| \mathbb{E} \Big[(\tilde{\beta}_k^{\text{rp}} - \tilde{\beta}) (\tilde{\beta}_k^{\text{rp}} - \tilde{\beta})^{\text{t}} \Big] \right\| = O(k^{-1})$

Intuition:

- "Centered orthogonal noise" averaged away; at the price of slower convergence
- $ilde{eta}_k^{\mathrm{rp}}$ converges to $ilde{eta}$ in L_2