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Dropout in Neural Networks
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- Neural network with shifted activation o, = o( - —v)
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Dropout in Neural Networks

- Neural network with shifted activation o, = o( - —v)
f(x) =] W(L) o GU(L) 0.+ 0 W(l) o Gv(l) o W(O)(x)

« During each iteration of training, dropout replaces each
weight matrix W with a sample from

w©D®,  p© "X Ber(p)



Dropout in Neural Networks

AN

Figure 1: Regular neurons (left) and random sample of dropout
neurons (right).




Linear Regression as a Toy Model



Why Study the Linear Model?

Canonical piece of wisdom: integrating over dropout noise in
linear regression leads to ridge regression/#,-penalization!



Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; o Ber(p); linear model Y = X, + ¢, then
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arg min [ED[||Y - XD5||§] = (pX'X + (1 - p)Diag(X'x)) X'y
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Why Study the Linear Model?

Proposition (Srivastava et al.")

Dropout matrix D;; o Ber(p); linear model Y = X3, + ¢, then

arg min [ED[HY —XDﬁH%] — (pXtX +(1 - p)Diag(XtX))_lXtY
B

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, R, Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR.
2014.



Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; o Ber(p); linear model Y = X3, + ¢, then

arggmn [ED[||Y XDB||2] (pXtX +(1 - p)Dlag(XtX)>

=B



Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; Fa Ber(p); linear model Y = X3, + ¢, then

argmin Ep|IY — XDpIZ| = 8

Intuition;

 Re-scaled minimizer performs weighted ridge regression:

ph = argénin(llY — X2 + (i -1)- WMBHD

« Small p = strong regularization



Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; o Ber(p); linear model Y = X3, + ¢, then

ERiR Ep|llY - XDBI3] =

Problems:

+ No explicit gradient descent

« No access to variance



Why Study the Linear Model?

Proposition (Srivastava et al.)

Dropout matrix D;; o Ber(p); linear model Y = X3, + ¢, then

argmin Ep|IY — XDpI3| = 8

Problems:

 No explicit gradient descent
« No access to variance

- Conditional expectation E| - | Y] represents loss of
information = § may not fully capture gradient descent
dynamics with extra noise



Gradient Descent with Dropout



Some Definitions

 Important matrices:

XX

= X — Diag(X)

Xp 1= pX+ (1 — p)Diag(X)

X :
X :



Some Definitions

 Important matrices:

XX

= X — Diag(X)

X, := pX+ (1 — p)Diag(X)

X @
X :

(X, invertible if min; X;; > 0)



Some Definitions

+ Important matrices:

X = XX

X := X — Diag(X)
Xp := pX+ (1 — p)Diag(X)

- Marginalized dropout estimator: § = X;*X'Y (minimizer
from proposition)



Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

Bre+1 = B — %Vﬁ’k”Y —XﬁkHz



Incorporating Dropout with Gradient Descent

Standard Gradient Descent:

2
=1

a
Prer1 = B = 5 Vg,
On-Line Dropout:
~ ~ o 112
Br+1 = P = EvngY —XDk+15k”2

A new i.i.d. dropout matrix is sampled every iteration!



Incorporating Dropout with Gradient Descent

On-Line Dropout:
~ ~ 104 ~ 12
Bics1 = P — Evﬁk”Y —XDk+1ﬁk”2
A new i.i.d. dropout matrix is sampled every iteration!

Questions:

« Convergence towards ?

« Characterizing dynamics with noise?



Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then
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Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then

[etgc~ 81, <[~ o - [elé -1,

Intuition:

- Exponential decay, as in regular gradient descent

« Expected learning rate ap



Convergence of Expectation

Proposition
If ap|X| < 1 and min; X;; > 0, then

[et6c~ 81, <1~ aps| - <1641,

Idea of proof:

+ Rewrite

B — B = (I — aDXDy)(Bi—1 — B) + aDX(pI — Dy )B



Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then

et~ < e[~ a1,

Idea of proof:
 Rewrite
Be—-B=(I-a Y(Bi—1 — B) + aDX(pI — D )B
+ Compute
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E[DkX(pI — Dy)] =0



Convergence of Expectation

Proposition
If ap|X|| < 1 and min; X;; > 0, then

et~ < e[~ a1,

Idea of proof:
 Rewrite
Be—-B=(I-a Y(Bi—1 — B) + aDX(pI — D )B
+ Compute
E[ 1=pXp
E[DkX(pI — Dy)] =0
» Now E[B, — B] = (I — apX,)E[Bk_1 — B]; induction finishes! ¢



Second Moment Dynamics



Second Moment Dynamics |

Theorem (Informal Statement)

Affine estimator B, := BY + a (B and a independent of Y) and
linear estimator 84 := AX'Y (A deterministic), then

E[Bui] ~ E[Ba] = Cov(But — BaBa) ~ 0
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Theorem (Informal Statement)

Affine estimator B, := BY + a (B and a independent of Y) and
linear estimator 3, := AX'Y (A deterministic), then

E[Batt] ~ E[Ba] => CoV(Bat — Ba,Ba) 0

Intuition:

« If B, (nearly) unbiased for 3,

Bai = B4 + centered orthogonal noise



Second Moment Dynamics |

Theorem (Informal Statement)

Affine estimator B, := BY + a (B and a independent of Y) and
linear estimator 5, := AX'Y (A deterministic), then

E[Batr] = E[Ba] => CoV(Bast — Ba,Ba) 0

Intuition:
- If B, (nearly) unbiased for B4,
Bast =~ B4 + centered orthogonal noise
« If B,Y + a; asymptotically unbiased for j4,

lilgn inf Cov(BkY + ak) > COV(EA)



Second Moment Dynamics |

Theorem (Informal Statement)

Affine estimator B,; := BY + a (B and a independent of Y) and
linear estimator 3, := AX'Y (A deterministic), then

E[Bui] ~ E[Ba] = Cov(But — Ba:Pa) ~ 0

Dropout-specific:

- Dropout iterates B, are affine estimators asymptotically
unbiased for §

» Cov(pB) represents fundamental lower bound



Second Moment Dynamics I

Lemma
Second moment of B, — f3 evolves as affine dynamical system

e[(c - BB ~ B)'] = S(E[(Bics — B)(Bir - B)]) +

pushed forward by affine map S with Ok-



Second Moment Dynamics I

Lemma
Second moment of B — f3 evolves as affine dynamical system

€[(c - BB — £)'] = S(E[(Bir - B)Br - B)]) +
pushed forward by affine map S with Pk-

Intuition;

« Interaction between GD dynamics and on-line dropout

encapsulated in S
« This structure remains hidden when considering averaged

estimator



Second Moment Dynamics I

Lemma
Second moment of 3 — f3 evolves as affine dynamical system

€[(c - BB — £)'] = S(E[(Bir - B)Br - B)]) +
pushed forward by affine map S with Pk-

Exact Definition:
S(A) = (I — apXp)A(I — apXp) + a?p(1 — p)Diag(X,AX,)
+a2p’(1- p’X O (4 + E[FF]) ©X

+ a?p*(1 - p)(XDiag(A + [E[EE"])X)
p

+ a?p?(1 - p)(XDiag(XpA) + Diag(XpA)X)



Second Moment Dynamics I

Lemma
Second moment of f; — f3 evolves as affine dynamical system

€[(c - BB — £)'] = S(E[(Ber - B)Br - B)]) +
pushed forward by affine map S with Pk-

Notes on Proof:

« Complicated expression due to dependence structure in

B — B = (I — aDkXDy)(Bi—1 — B) + aDX(pI — Dy )B



Second Moment Dynamics I

Lemma
Second moment of f; — f3 evolves as affine dynamical system

€[ (B ~ )i - )] = S(E[ B - BB - B)]) +
pushed forward by affine map S with Pk-

Notes on Proof:

« Complicated expression due to dependence structure in

B — B = (I — aDkXDy )(Bi—1 — B) + aDX(pI — Dy )B

» Requires computing 4" order moments E[DyADyBD;CDy|



Second Moment Dynamics Il

Theorem
For sufficiently small a =: a(X, p), Sy =: S(0), and =S-S5,

HE[(&‘ - 5)(51{ = E)t] — (id _ )—1S0

= O(k||I - apxpuk-l)



Second Moment Dynamics Il

Theorem
For sufficiently small a =: a(X, p), S, =: S(0), and =S-S5,

H[E[(Ek - B)(Bk = ,g)t] — (id _ )—1S0

= o(k||1 - ochka_l)

Notes:

« Limit characterized by intercept S, and linear part S;;,, of S
« Small « = operator norm of S;;, less than 1



Second Moment Dynamics Il

Theorem
For sufficiently small a =: a(X, p), S, =: S(0), and =S-S5,

H[E[(Ek - B)(Bk = ,g)t] — (id _ )—1S0

= O(Kllr = ap, ")

Corollary I
+ Cov(fy) = Cov(B) + (id — Siin) ™ So + O(KlI — apX, |[<1)

- (id— Shn)‘lso is the variance of the “centered orthogonal
noise” from earlier proposition



Second Moment Dynamics Il

Theorem
For sufficiently small a =: a(X, p), S, =: S(0), and =S-S5

H[E[(Ek - B)(Bk = B)t] — (id _ )—150

= O(KIIT ~ apx, )

Corollary I

~ ~ . -1 -

+ Cov(fy) = Cov(B) + (id — Siin) ™ S + O(KlI — apX,|[<1)

- (id— Slm)_lso is the variance of the “centered orthogonal
noise” from earlier proposition

» Unfortunately, (id — Slin)_ls0 # 0 in general, so i does not
attain the optimal variance!



Second Moment Dynamics Il

Theorem
For sufficiently small o =: a(X, p), Sy =: S(0), and =S-S5,

{8 - )5 - 8] - (i = 5..)"5o = O(Khr - apy 1)

Corollary II:

« In general, B does not converge to 5 in L, since

eI - 813] = e(E[ (B - A)(B — )]

i Tr((id - Snn)‘lso).



Our techniques/results show:

- Second-order analysis of gradient descent with dropout is
already rather technical in the linear model.
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+ Elementary — yet complicated — linear algebra is
necessary at first to compute the basic objects, then a
more abstract perspective can be applied.
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Our techniques/results show:

« Second-order analysis of gradient descent with dropout is
already rather technical in the linear model.

« Elementary — yet complicated — linear algebra is
necessary at first to compute the basic objects, then a
more abstract perspective can be applied.

« Second-order dynamics are only visible through direct
study of on-line iterates.

« Often cited connection with ridge regression is more
nuanced for the variance.

10



Extensions/Open Problems

* Neural networks?

« Connections with other forms of algorithmic
regularization?

« Randomized design and iteration dependent learning rate?

1



For more details:
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Thanks for your attention!



Sub-Optimality of Variance

Theorem
Suppose supm#|xgm| # 0 forevery ¢ =1,...,d, then

lim Cov(B) = Cov(B) 2 O(Amn(X) L x3) I

whenever the limit exists.



Sub-Optimality of Variance

Theorem
Suppose supm#|xgm| # 0 forevery ¢ =1,...,d, then

lim Cov(fy) - Cov(B) = O(Amin(X) Lmin X3) I

whenever the limit exists.
Notes:

- Non-trivial bound provided A,,;,(X) > 0.



Sub-Optimality of Variance

Theorem
Suppose supm#|xgm| # 0 forevery ¢ =1,...,d, then

kh—>n<;10 Cov(By) — Cov(pB) > O(/lmm(X) mln;é Xz) I

whenever the limit exists.
Notes:

» Non-trivial bound provided 2,,;,(X) > 0.
+ Frobenius norm of right-hand side scales with dimension d.



Ruppert-Polyak Averaging

Theorem

Running average )’ := % El;:l B.,; for sufficiently small «

|l - o) -9

= o(k™)



Ruppert-Polyak Averaging

Theorem

Running average B’ := i Z’;Zl B.; for sufficiently small

|l - o) -9

= o(k™)

Intuition;

« “Centered orthogonal noise” averaged away; at the price of
slower convergence

« B convergesto fin L,
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